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1 Introduction
Complex distributed algorithms become running systems
through an integration with optimizations that target the
system’s deployment environment. Although expedient,
this approach has disadvantages. First, this often makes
implementing the algorithm difficult, since its logic must
be composed with the optimizations. Second, proving the
guarantees of the implementation is tedious, because the
proofs must be derived for the composed algorithm, which
may not be directly mappable to the original, unopti-
mized algorithm. Finally, retargeting the implementation
to a different deployment—requiring a different set of
optimizations—can be wasteful, since a new composed
algorithm must be derived to include this different set of
optimizations, including their correctness proofs.

We fault the tussle between abstraction and perfor-
mance as the fundamental cause for this problem. On one
hand, algorithm designers need abstraction to simplify the
job of identifying and proving invariants or liveness prop-
erties about their algorithms. On the other hand, algorithm
implementers have faced an age-old conviction (grounded
in at least some truth) that abstraction hurts performance,
which for the complexity and latencies involved in dis-
tributed algorithms often leads to unusability.

This trend is evident in the level of detail present
in the pseudo-code descriptions of many replicated sys-
tems. For example, the PBFT system [4], a replicated
state machine based on Byzantine consensus, gives an
I/O Automaton specification—arguably a clean formal-
ism intended for proving properties—that nevertheless
contains explicit details about cryptographic tools (digi-
tal signatures vs. MAC authenticators), content dissemi-
nation (push vs. pull, direct broadcast vs. one-hop flood),
deduplication (send whole object vs. object digest), trans-
port mechanisms (retransmissions, negative acknowledg-
ments) and group communication (manual collection of
identical messages from many sources to form quorums).

Beyond specification, these implementation details fea-
ture prominently in the correctness proofs prepared by the
authors; in fact, the authors had to prepare distinct proofs
for different versions of their algorithm that differed in the
choice of implementation details (crypto for message au-
thentication) but ostensibly not in the fundamental “busi-
ness logic” of the algorithm. This was not an isolated
example: in the decade since that work, dozens of other

proposals have been presented that push into the business
logic further optimizations for distinct execution environ-
ments and workloads (e.g., mostly non-faulty or trusted
nodes, or even mostly read-only or contention-free write
requests). Although such overspecialization is successful
at improving performance, at an algorithmic level it in-
creases complexity and hurts dependability: implementa-
tions appear with missing features, and correctness proofs
end up lacking rigor.

In this paper we challenge the validity of the tussle at
the heart of this trend. We argue for a different way to
build replicated systems that are both rigorous in spec-
ification and guarantees, but also optimized to perform
well in their particular execution environment and work-
load. We make the case for separating implementation
details from the algorithms they optimize—arguably as
old an idea as computer science. In particular, we ad-
vocate a replicated algorithm abstraction model that ad-
mits provably safe, plug-and-play, fine-grained optimiza-
tions that can be chosen and applied automatically, main-
taining any safety and liveness guarantees proven for the
optimization-free algorithm specification.

2 What To Optimize
Consider the following toy example, reminiscent of many
primary-backup replicated systems (Figure 1). There is
a number of server replicas and an elected (usually, ro-
tated) primary. When the application requests a service
call (Step 0), the client sends a request to all replicas (Step
1). The primary assigns a sequence number to a received
request to order it globally, and notifies all replicas of the
assigned order (Step 2). Replicas execute requests in the
sequence-number order assigned by the primary (Step 3),
and then send a reply to the client with the execution re-
sults. The client waits for a quorum of replies (say 2/3 of
all replicas) with the same result (Step 4), and then notifies
the application (Step 5). If a replica receives no ordering
within a short time after it has received a client request, it
suspects the primary of malfunction (Step 6).

This toy design is a simple enough algorithm, yet in
practice it would have to be augmented in several respects
to improve performance, e.g., client-observable response
times, and to reduce overhead, e.g., bandwidth and CPU
utilization. This augmentation, depending on deployment
assumptions, results from different choices of how to im-
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Figure 1: A simplified primary-backup system.

plement the business logic; we call these implementation
idioms, and describe a few next.

First, the client might send requests only to the pri-
mary (in Step 1), which forwards them to replicas (sparing
client-replica bandwidth), or the client might broadcast
the request to all replicas, as shown, avoiding overload
on the primary but using more bandwidth.

Second, the ordering message in Step 2 may bundle the
whole request along for the ride, taking up bandwidth but
ensuring both ordering and request will be available at
the recipient replica; instead the ordering message may
only contain a cryptographic digest of the request (for in-
tegrity), allowing the request to be demand-fetched by the
backup, resulting in higher latency due to the extra step
between Steps 2 and 3.

Third, authenticated messages that must be non-
repudiable—i.e., verifiable by all—to ensure system live-
ness in Byzantine settings may be digitally signed with
an expensive asymmetric cryptosystem such as RSA. Al-
ternatively, they may achieve non-repudiation via cheaper
point-to-point authentication (e.g., keyed hashes) but with
additional assumptions (a threshold fault model) and pro-
tocol complexity (e.g., atomic broadcast).

Fourth, the implementation of send-to-all message se-
mantics from the client to replicas in Step 1 may be im-
plemented as broadcast, resulting in worst-case bandwidth
utilization. Otherwise, the sender may send to only some
of the replicas hoping it will be enough, and send to the
rest if no progress is made—this appears in “preferred-
quorum” optimizations in several systems.

Finally, the primary may transmit Order messages to
backups one at a time, paying per-message cryptographic
and network costs, or it may delay earlier messages to
batch them together amortizing costs. Other such idioms
have different performance implications [16].

Beyond implementation, there are some common ex-
pressive idioms that creep up almost always when build-
ing replicated systems. For example, often a replicated
server must wait until it receives the same message from
multiple other replicas before it can proceed to the next
step of the algorithm (we call this data rendez-vous); and
fall-back actions (e.g., leader election) occur when time-
outs or other conditions arise. Such expressive idioms are
required no matter how an algorithm is implemented, and

usually result in extra specification complexity (e.g., extra
transitions in a state-machine formalism) only to perform
rather boiler-plate, algorithm-unspecific manipulation of
messages. In other domains, entire classes of program-
ming languages (event-coordination languages [7]) exist
to capture precisely such rendez-vous semantics.

All of the idioms we have described have a coordina-
tion flavor: they are about messaging among processes,
not about computation within a process. Furthermore,
they are independent of the semantics of the algorithm in
question: the designation of primaries, clients and back-
ups is immaterial to the functioning of the idioms. Oth-
ers have proposed deeper algorithmic idioms, that attempt
to refactor and compose algorithms with each other, as
opposed to optimizations to algorithms [2, 8]. We believe
those to be just as important, but limit ourselves to coor-
dination idioms, which are simpler to abstract, combine,
and systematically manipulate aggressively.

3 Design Considerations
Embarking into this project, we considered the following
goals essential to success. First, provable guarantees, not
only for the algorithm but for as much of the running sys-
tem as possible, are fundamental to achieving dependabil-
ity. Second, any solution should enable retargetable sys-
tems: change in the deployment characteristics should not
require building up an algorithm, correctness proofs, and
implementation from scratch. Third, perhaps unconven-
tionally, we favor skill separation, in which deployment
engineers need not necessarily understand deeply the al-
gorithms they are trying to optimize for their environ-
ment; conversely, neither should algorithm designers be
well versed in the tricks of building efficient implemen-
tations. Finally, we are targeting a smooth adoption curve
for algorithm designers and system builders, alike.

Closest to our goals comes MACE [9]. It specifies dis-
tributed systems in a macro language, which is then com-
piled into C++ (or other languages). MACE programs can
be model-checked for debugging both safety and liveness
violations. Although useful to many researchers over the
years, MACE does not meet all of our goals. It offers
no provable guarantees, but uses model-checking to find
bugs; absence of bugs does not mean correctness. It has
not explicitly addressed retargetability. As a consequence,
it does not address skill separation either. These shortcom-
ings may be moot if the goal is to build an efficient, debug-
gable distributed system fast, but our goals are different.

We considered several design trade-offs, mostly exem-
plified by systems and techniques used in the past.

Programming Discipline—Declarative networking
(e.g., systems like P2 and others [12, 14, 16, 17]) has been
proposed for routing protocols, overlays, distributed sys-
tems, and even cluster services. Its claim to fame is using



a high-level declarative language (e.g., logic or functional
languages) to program systems. On the other hand, declar-
ativity is relative [15], and often alienates programmers:
relational elegance aside, not everything is a relation.

In our approach we chose a hybrid design, in which we
allow programmers to retain an imperative programming
style for computation—the parts of an algorithm typically
executed locally within a single node—but use a very
high-level declarative abstraction for coordination. The
rationale is that coordination among processes in com-
plex replicated systems is increasingly effected via RPC
libraries, and group communication primitives. Such tools
typically auto-generate code from specification. Program-
mers tend to be less “possessive” of the minute details in
coordination. This is consistent with our goal of a smooth
adoption/learning curve.

System View—A programming abstraction that offers
programmers a single-system illusion may significantly
simplify algorithm specification. In a traditional network-
of-computers paradigm, a client may have to prepare a re-
quest and transmit it to a server where the server validates
the request before executing it and responding. In contrast,
a shared-everything global-view paradigm can abstract all
this as a single function call or variable assignment. On
the other hand, maintaining the single-system illusion im-
plies complex, subtle understanding of the semantics of
the algorithm with respect to state characteristics, access
patterns to different objects, consistency expected, etc.; a
shared-nothing paradigm may instead better capture iso-
lation among logically distinct components.

We chose to adopt a local-view system model in
which nodes only implicitly share immutable coordina-
tion data; shared updatable objects, if required, must be
built on top of the basic programming paradigm. This is
in stark contrast to other high-level distributed program-
ming paradigms [13, 14], but is most consistent with how
replicated algorithms are designed and analyzed today—
typically in some form of event-driven state-machine
representation. It also simplifies the semantics required
for coordination among nodes: if nothing mutable is
shared, the programming abstraction need not encompass
complex consistency models, and enables sophisticated
caching to improve performance.

Level of Abstraction—Abstractions come at differ-
ent levels of detail, enabling the composition of business
logic and optimizations of differing scope and sophistica-
tion. For example, a primitive for message authentication
could rest its abstraction at the cryptosystem level (i.e.,
“RSA-signature”) abstracting implementation away; this
is how “providers” work in cryptography toolkits such as
Java’s JCE. Alternatively, the primitive might lie at the
mechanism level (i.e., “public-key signature”) abstract-
ing the choice of cryptosystem (as in PBFT-like proto-
cols in the literature), or even at the authentication prop-

erty level (i.e., “non-repudiable authentication”), which
may be implementable with cryptographic or other mech-
anisms (e.g., Matrix Signatures [1]). Intuitively, the choice
of abstraction level should match the common expressive
building blocks that algorithm designers use. For repli-
cated algorithms, the choice of cryptographic algorithm is
almost always irrelevant.

Our choice was to push the level of abstraction up ag-
gressively over that used in most replicated systems in
the literature. We opted for authenticated multi-sender-
multi-receiver messages with references. We introduced
a generalized authentication primitive that abstracts im-
plementation mechanisms away from the algorithm spec-
ification; this allows the seamless composition of both
cryptography- and protocol-based tools to implement au-
thentication. Our messaging primitive abstracts details of
multiple senders (used in quorum statements in replicated
protocols), as well as the more traditional notion of multi-
ple receivers (which can be mapped to network multicast
or unicast, as well as sophisticated content dissemination
techniques). Finally, we abstract away the means for im-
plementing message-to-message references (typically im-
plemented either via digests or via explicit nesting).

4 MOMMIE Knows Best
Guided by our goals and design choices, we are cur-
rently exploring a systematic yet practical decomposi-
tion of the logic of distributed algorithms from opti-
mizations, providing the following benefits. First, algo-
rithm designers need only design the inherent algorith-
mic logic—computation within computing nodes and co-
ordination among nodes—in a single, high-level program-
ming framework logically reminiscent of tuple spaces [7],
which we call MOMMIE (for MOMMIE Optimized Mes-
saging Middleware in Insecure Environments). A MOM-
MIE program can be used for verification and reasoning
about algorithm properties, since it can be translated di-
rectly to a formal specification (we use TLA+ [11]). In
TLA+ properties can be rigorously proven by hand, us-
ing theorem provers [6], or model-checking [11, Ch.14].
The same MOMMIE program can be used to generate
executable code that runs within a deployment platform
(computers and networks). In fact, a programmer may
choose to use a more traditional way to code up specific
parts of the computation (e.g., in C++), and use the MOM-
MIE program as a way to generate runtime assertions for
those hand-coded fragments.

Second, a deployment engineer can automatically com-
pose the MOMMIE program with her desired pre-existing
or custom implementation modules for optimized coordi-
nation, such as those described in Section 2. The com-
posed, optimized runtime preserves the safety and live-
ness properties proven for the algorithm; the engineer
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Figure 2: A MOMMIE program (center), can be translated to TLA+
(left) or executable code (left, along with configured implementation
modules). Diagonal shading indicates auto-generated components.

need only be concerned with picking the modules that im-
prove performance for a particular deployment environ-
ment. In practice, the choice of implementation modules
may also be done via mathematical or heuristic optimiza-
tion. Figure 2 presents a high-level illustration of how a
MOMMIE program can become a formal specification or
an optimized executable.

Programming Abstraction—A MOMMIE program
consists of a number of state transitions, like the following
example transition for a replica’s Step 3 from Figure 1.

1 WHEN [PRIMARY, ME, NONE] Order order {{ m==req; seqNo==executeSeqNo; }}
2 ANDWHEN [c C == 1, ME NOONE] Request req
3 @@{
4 Result res <- execute(req);
5 PUBLISH [ME, c, NOONE] Reply(req, res);
6 executeSeqNo <- executeSeqNo + 1;
7 @@}

The transition consists of a trigger describing the enabling
condition for the transition (WHEN . . .ANDWHEN . . . ), and
the body spec (@@{...@@}) executed when the transi-
tion is actually invoked. The body spec appears like an
imperative sequence of simple commands, including vari-
able assignments, conditionals, set comprehensions, etc.,
as well as PUBLISH commands that emit information for
other nodes, as described below. A designer may also pro-
vide a body program in a language such as C++, in addi-
tion to the body spec; while the body spec will be used for
verifying the properties of the algorithm, the body pro-
gram will be used in the executable, with interwoven run-
time assertions derived from the body spec. In the absence
of a body program, executable code for the body of a tran-
sition is auto-generated from the body spec.

Information is conveyed among nodes in authenticated
statements of the form [I, V, A]X, where I, V, and
A are the statement’s issuer, intended verifier, and in-
tended auditor (principals), and X is a record similar to
a C struct. Statements move from node to node via the
MOMMIE pool, a logical collection of interconnected
per-node statement caches. A node i PUBLISHes a state-
ment [i, V, A]X into the pool, and that statement is
eventually made KNOWN to its intended verifier V. Au-
ditors are meant to capture the security notion of non-
repudiation. Any statement [I,V,A]X can be verified
not only by its intended verifier V but also by its auditor
A; unlike its verifiers, though, auditors are not intended
as immediate destinations for such statements. Line 6 in

the example above emits a statement of type Reply au-
thenticated by the local node (system constant ME), and
intended to be verified by node c (formal parameter of
the transition declared in line 3), and auditable by no one
(system constant NOONE).

A node may inspect its local pool synchronously, via
the KNOWN operator, or asynchronously via transition trig-
gers in WHEN expressions. In both cases, the lookup is
specified as a statement pattern, a statement with some
of its authentication principals or fields unbound. We will
forego details due to space constraints, but as an exam-
ple, line 1 above expects statements whose issuer matches
the constant PRIMARY (declared elsewhere), its verifier is
the local node, it may or may not be repudiable (no auditor
is expected), and matches the record type Order, whose
fields m and seqNo are bound by equality constraints;
other field constraints not shown include univalent and
multivalent don’t-cares. A distinctive feature of lines 1
and 2 (a conjunction of statement patterns) is that the
field m of the expected Order must match the Request
record expected in line 2; this is a message-to-message
reference. In practice, MOMMIE may implement this ref-
erence via a cryptographic digest, or via nesting of the
Request within the authenticated Order message. Another
notable type of statement pattern concisely abstracts quo-
rum messages, as in the client’s Reply collection (Step 5).

1 WHEN [R >= 3, ME, NOONE] Reply r

The client expects the same Reply record issued by at
least 3 of the principals from the set of all replicas R (a
constant declared elsewhere). The programmer need not
explicitly write out state transitions that collect one re-
ply after another, checking that eventually 3 are collected;
the middleware takes care of that. The MOMMIE pool
logically derives authenticated statements according to a
number of statement inference rules reminiscent of BAN
logic [3]. For example, issuers from [I1,V,A]X and
[I2,V,A]X in a pool are merged automatically to de-
rive [{I1,I2},V,A]X in that pool.

Optimization Interface—A deployment engineer (or
a mathematical optimizer) can specify a deployment con-
figuration of the form

1 [Authentication]
2 a <-> b : Plain, HMAC-SHA1
3 [Non-repudiation]
4 x -> * : TTP(z)

5 y -> * : RSA
6 [Dissemination]
7 x,y -> * : OPTIMISTIC(PRIMARY);
8 OPTIMISTIC(QUORUM);

that determines what mechanism, cryptographic or oth-
erwise, to use for authentication and non-repudiation
between two principals, and how to decide where to
forward authenticated statements in practice. For each
authentication/non-repudiation mechanism, we establish
what kind of authenticated statements it provides once,
which we subsequently check at deployment time. For ex-
ample, HMACs provide authenticated but repudiable (au-
ditor is NOONE) statements, whereas RSA signatures pro-
vide universally auditable statements. We also consider



plaintext authentication (when the deployment engineer
has determined an authenticated channel, such as a VPN
connection, already exists), trusted third parties for non-
repudiation, etc. Notably, each principal-to-principal pair
may be configured with a distinct authentication mecha-
nism by the deployment engineer, yet the high-level pro-
tocol will be seamlessly able to operate using abstract au-
thenticated statements, quorums thereof, etc. The safety
properties of the abstract algorithm are maintained due to
the composition with authenticated statement implemen-
tations that individually retain authentication semantics.

A data dissemination plan is chosen by turning authen-
ticated statements into distinct network messages. Dis-
semination is configured as a sequence of dissemination
optimizers. Each optimizer is tried in order with a con-
figurable escalation timeout. If the optimizer succeeds in
getting the publisher’s state machine to make progress, no
other optimizers are used; otherwise, MOMMIE chooses
the next optimizer in the sequence. When all optimizers
have been exhausted, MOMMIE eventually reverts to the
most general dissemination mechanism, unicast to all in-
tended statement verifiers. Since this fallback implements
precisely the semantics of published statements, MOM-
MIE preserves the liveness guarantees of the algorithm;
dissemination has no impact on safety.

An interesting feature of MOMMIE is that PUBLISH
may be accompanied by a statement pattern whose sat-
isfaction indicates the achievement of “progress” (e.g.,
a transition into a new state); this allows the dissemina-
tion mechanism underneath to know when to stop trying
further network exchanges for the same abstract authenti-
cated statement.

5 Outlook
MOMMIE is at the early stages of development. It is more
suspicion rather than a proof of feasibility. We have stud-
ied its theoretical underpinnings including its semantics
and the properties of the abstract and optimized pool. We
have created an initial prototype that parses the language,
generates TLA+ specifications, and executable optimized
runtimes (for very simple body specs). Much remains to
be done to evaluate the price of abstraction, and the bene-
fits of systematic optimizations.

More specifically, although we have shown how an al-
gorithm can turn into a running protocol, we have not yet
attempted to develop a full software stack. Until then, any
properties “guaranteed” by MOMMIE are at best approxi-
mations of a world in which kernels, drivers, libraries, and
applications act according to spec. The progress made by
seL4 [10] encourages and inspires us, but the massive ef-
forts involved point to a long journey ahead.

With this work we produce no new algorithms or proto-
cols. Instead, our vision is to bridge the gap between those

who think hard to develop and prove new distributed al-
gorithms, and those who work hard to implement such
algorithms into efficient, performant systems on complex
environments. In a sense, we hope to address a complaint
raised by Chandra et al. at the 2007 PODC symposium:
“The fault-tolerance computing community has not devel-
oped the tools to make it easy to implement their algo-
rithms” [5]. Our secondary goal is to help harness the op-
timization tricks devised for one distributed algorithm and
apply them easily to another; it is telling that in the same
work quoted above, Chandra et al. reinvent numerous op-
timizations described and implemented a decade before.
Our final, perhaps less noble goal is to liberate distributed
systems researchers—and corresponding academic pub-
lication venues—from the seemingly unquenchable thirst
to re-specify, re-validate, and re-implement the same clas-
sic distributed algorithms in yet another slightly different
deployment setting with slightly different optimizations,
allowing them to focus on algorithmic innovation instead.
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