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Abstract
Strong, machine-checked security proofs of operating
systems have been in the too hard basket long enough.

They will still be too hard for large mainstream op-
erating systems, but even for systems designed from the
ground up for security they have been counted as infea-
sible. There are high-level formal models, nice security
properties, ways of architecting and engineering secure
systems, but no implementation level proofs yet, not even
with the recent verification of the seL4 microkernel.

This needs to change.

1 Introduction

For mainstream operating systems the community has
given up on strong security. We can graft mandatory ac-
cess control onto Linux, or try to harden Windows NT,
but we are in no position to get to provable or even just
assurable security of such OSes in the next 20 years.

We do have a number of high-level security models
that work with nice, provable properties. There are ways
to build and structure secure systems. We know that sys-
tems can be secured much better by reducing the trusted
computing base (TCB). Microkernels with access con-
trol and separation kernels provide solid foundations for
implementing such models. Some such systems have
been built, demonstrated, and are deployed. But even
with their reduced TCBs nobody has yet proved secu-
rity down to the implementation level. They also have a
legacy problem—users, even those with high security re-
quirements, like to run the software they know, and such
software usually expects to run on a mainstream OS.

Type 1 hypervisors have been proposed to deal with
the legacy problem and to assume the role of separation
kernels, but there are no implementation-level proofs for
these yet either.

On the other hand there has been progress on the proof
side for small kernels, such as our functional correctness

verification of the seL4 kernel [10]. Extrapolating to the
future, it is certainly possible to reduce the effort for this
kind of verification. Let’s assume that in the next 10
years there will be more and more small kernels with
formally verified functional correctness down to the im-
plementation. Such proofs do not automatically imply
security [9]; we will revisit why precisely in Section 2.
However, with these proofs available, we claim it is now
feasible to reach one of the holy grails of security: We
can now prove that not only kernels, but whole system
implementations have strong security properties.

Feasible does not mean easy. There is a clash between
the precise specification of a real system, and idealised,
simplified, high-level security properties in the litera-
ture. Section 3 examines some of these challenges and
our experience proving access control enforcement for
seL4 [12]. Similar challenges are to be expected for other
systems.

Assuming we can prove security properties of kernels,
we are still not done yet. What we ultimately want to
achieve is proof that whole systems enforce their security
goals. Big legacy systems and big code bases may still
be a problem, but there are ideas for solutions. We will
still not get absolute security in the end (sorry, we never
will), but we can get much stronger assurance for much
larger systems than what is thought feasible today. In
Section 4 we sketch how we plan to do so.

Our message is that security implementation proofs
are doable and should be done. They will not make Linux
secure, but in areas where we do care about security, they
will be able to give us systems we can trust, that are us-
able, and that are not horribly expensive.

2 Functional Correctness

In this section, we revisit what functional correctness is
precisely, why it does not necessarily imply security, and
why it makes it feasible to prove security properties on
the code level.
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Functional correctness reasons about a specification
and an implementation. It asserts that the implementa-
tion correctly implements the specification. For a micro-
kernel, the implementation level should be the code, e.g.
C or assembly. The specification is an abstract model of
the kernel that is smaller, easier to understand, more con-
cise, and written in a high-level language such as a rich
formal logic.

The main implication of functional correctness is that
in order to find out if a property is true about the ker-
nel, one does not need to look at its complex, optimised
implementation anymore, but instead can reason about
the smaller specification. This does not work for all
properties, but it does work for the large class of prop-
erties preserved by formal refinement, including every-
thing that can be expressed by Hoare triples such as in-
variants about the states of the system.

For kernels written in C, functional correctness gives
us additional beneficial side effects, because kernel ex-
ecution must always be well defined. This eliminates
the usual problems that plague C programs such as null
pointer dereferences and buffer overflows. We do not
need to consider low level code issues any more, and can
instead focus on API and system security.

Proving functional correctness is the right first step
and the basis for proving further high-level properties.
It is also the point where language becomes confusing.
For instance, the seL4 kernel is now verified, and it is
tempting to assume it will never exhibit any unwanted
behaviour if the proof assumptions hold. However, the
proof says only that the code will follow the specifica-
tion; it does not say that the specification enforces a spe-
cific security property (apart from those above that we
get as free side effects).

What we have gained for security, apart from a pre-
cise specification and a proof that the kernel implements
it, is the ability to state specific security properties con-
cisely and prove them with much less effort. The re-
duction in effort is substantial. It is similar to work-
ing from a well defined API instead of re-implementing
functionality from scratch each time. We estimate that
proving e.g. integrity enforcement in seL4 would have
taken us at least the same 25 person years that the func-
tional seL4 verification did. Now, it took less than 10
person months [12]. Further high-level properties will
be similar. The same is true for proving anything about
user-level applications that make use of kernel calls.

3 Access Control: Ideal and Real

In this section we show some of the challenges one
should expect when proving high-level properties about
real kernel APIs. As we shall see, there is a significant
gap between traditional, idealised security properties and

the complexities of real APIs. There is scope for devel-
oping realistic security properties that scale to real sys-
tems. However, our experience also indicates that prov-
ing security of kernel implementations is feasible.

We use as an example the proof [12] of a generic, high-
level access control theorem about the seL4 kernel spec-
ification, and thereby the seL4 code. We believe our ex-
perience in this is not specific to seL4, but intrinsic to
showing security about real implementations.

Correct access control is one of the most basic secu-
rity properties any OS kernel should enforce, and it is
the one that should be proved first, because it provides
the basis for more complex, system-wide security prop-
erties as well as one of the main formal proof tools for
composing user-level systems on top of the kernel.

Access control proofs have been completed before for
various kernels [4, 13]. These proofs have analysed ide-
alised kernel models removed in various degrees from
the messy details that necessarily exist in practical kernel
APIs. The focus of this section is how the story changes
when the kernel model is rooted in reality by proof.

The seL4 kernel was designed to implement a
capability-based [5] access control system, so we set out
to prove that it does. The high-level enforcement prop-
erty for access control in capability systems is simple and
well known:

Authority. Each subject may read or affect the state of
an object only if it can present a capability with the
appropriate access rights to that object.

Propagation. Subjects may not inappropriately obtain
new authority. In particular, one subject may share
its capabilities with another only if that first subject
transitively possesses Grant authority to the second,
or if the two subjects share capability storage.

To prove that this is true, we first must define what
each capability authorises, e.g. exactly which parts of
which objects may be affected, and then show that only
these allowed effects happen. This is also what develop-
ers intuitively reason about when they construct systems.

In ideal systems, this definition is obvious and easy to
understand: a capability points to an object, it authorises
only operations that can affect this object, and it does so
only if the capability provides write access.

In real implementations, this definition is not always
obvious. For instance, IPC in seL4 involves multiple
objects. A thread sends to an endpoint, another thread
listens on the same endpoint. To do so, the first thread
presents an endpoint send capability, the second an end-
point receive capability. A simple enough mechanism,
but it already requires us to say that the send capabil-
ity authorises changes in four different objects: a) the
endpoint, b) the thread state of the sender, c) the thread
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state of the receiver, and d) the IPC buffer of the receiver
which may be located in a frame. This is still not a prob-
lem: we generalise to a set of objects instead of one, and
it may take some lookup operations to say exactly which
ones. It can get more subtle: a frame capability in seL4
provides not only the authority to read and write to the
frame according to its access rights, but it also confers
the authority to unmap the frame from its current address
space, for instance when the capability is being deleted
as part of a larger revoke operation. Again, this is no con-
ceptual problem, but now we are talking about a poten-
tially large set of objects already (a whole address space),
even though only very limited change is permitted (un-
mapping a particular frame). Clearly, the definition is no
longer as clear-cut and intuitive as in the literature.

The normal reaction to such complications in high-
level models is usually to say: without loss of general-
ity, we can assume that the API can be simplified to an-
other API that achieves the same effect, such as sending
a message. In this new API there is now only one object
affected again, keeping the definition of security simple.
This is perfectly reasonable when the goal is to develop
a security model and to present it.

If the model is rooted in the code, however, these kinds
of simplifications do not work anymore. The intention is
not to prove something about another, simpler API that
has nice properties, but about the API that the code im-
plements. You can prove further abstractions, but they
have to be true abstractions of the API. You can also
prove that some behaviour is equivalent to another for-
mulation that may be nicer, but you cannot leave out a
behaviour that the code has, just because it introduces
complexities into the high-level property.

It is of course also possible to change the real API and
thereby truly simplify the model, but usually there is a
reason the API has this complication in the first place. In
our example, the seL4 API is the product of many engi-
neering, proof, and design trade-offs. As other kernels
do, it contains necessary corner cases and subtle excep-
tions to an idealised notion of access control. Both com-
plications mentioned above were known beforehand to
the design and verification teams and were deemed worth
the cost in the trade-off with other options.

In short, there is no place to hide: either simplify the
real API or deal with more complexity in higher-level no-
tions such as access control. This is not a fundamentally
new trade-off, but it necessarily keeps both the designers
and verifiers honest about the complexity in their system.

Even simply defining the high-level property and look-
ing through the kernel API specification to see if it is en-
forced will throw up these issues. We did this for seL4,
starting with the simple notion of access control from the
literature and either refined and generalised it or changed
the kernel as we discovered exceptions to it in the API.

Sometimes the change can be an actual security fix (a
right that should have been checked and was not), some-
times it will be an API simplification that makes things
more consistent.

In our case, two API simplifications happened in
places that were flagged as too complex already, but
where looking through the specification uncovered viola-
tions of the authority and propagation properties above.
These were true security violations, not just added com-
plexity to the notion of security. One was a privilege es-
calation from read-only to read-write thread capabilities,
the other was a state change authorised by a nominally
read-only capability. The root cause of both cases was
API evolution: the kernel designers initially envisioned
systems where these access rights made sense, but later
saw better ways to construct secure systems that did not
need them. In systems constructed the new way, these
read-only capabilities would never occur, and so less at-
tention was spent on their consistent enforcement. The
issues were not spotted earlier, because the rights had no
impact in the new way of using the API. However, devel-
opers who had not read the specification carefully might
assume a security mechanism that was not enforced. It
would have been easy to add additional code checks to
enforce the access rights consistently, but instead we de-
cided to simplify the API to reflect the intended use case.
Adapting the functional correctness proof to these API
changes required little effort, less than one person week.

In summary, there is a significant gap between ide-
alised security notions and the refinements and generali-
sations that are needed when they are applied to real ker-
nel models. If more groups start reasoning about other
kernel models, connected to reality by proof or other
mechanisms, we will see increased demand for security
definitions that scale to realistic features, but that are still
usable for higher-level reasoning.

Our seL4 work has produced one such generalisation
for access control, but the design space for such prop-
erties is large and we will certainly not have explored it
fully. There is an opportunity for the whole field to make
security properties more real, both in terms of mecha-
nisms as well as formalisations. This does not require
big functional correctness proofs. It only requires precise
models of real APIs and the willingness not to simplify
them for convenience, but only under realistic trade-offs
when the code is changed in tandem.

4 Whole System Security

The previous section argued that while there is work to
be done, we can soon expect generic code level security
properties to be proved about small OS kernels. We now
examine the prospects of proving security properties of
whole systems. Again there is much work to be done,
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but we think that this goal is now within reach.

How far can we push these properties? There is rich
literature on security, and it is to be expected that the
more mature, well developed properties lend themselves
better to application.

Apart from access control, users are usually interested
in information flow properties like secrecy and integrity.
Label based security models that are close to access con-
trol models can be used to reason about both, and we
expect a similar need for these to be refined and gener-
alised when applied to real kernels, but that proving them
for real implementations will still be feasible.

Noninterference [6], as a generic property between
isolated subsystems, is a stronger information flow prop-
erty, because it can encompass all storage channels ob-
servable in the kernel model. However, it has some spe-
cific technical challenges. In particular, many common
noninterference properties are too weak, because they
can hold for a specification but not for a functionally cor-
rect implementation of it [8], while others that require
every functionally correct implementation to be secure
are often too strong, when the insecure implementations
never arise in practise [11]. This means that more work
has to be invested, and more care taken, to specify and
prove noninterference. We have made some initial head-
way in formulating it for seL4 and think it will still be
feasible to prove at the code-level in controlled settings.

Building on information flow models, we can get to a
generic separation kernel or hypervisor property for run-
ning isolated, untrusted guests side-by-side on the kernel.
This is less general than the other properties above, but
it is a popular and well defined use case. If we can prove
noninterference, these others should follow easily.

What properties will still be too hard? We do not yet
see a good formal handle on timing and time based covert
channels for real implementations. While there are many
analysis and mitigation techniques, we do not expect to
be able to obtain the same level of formal proof for these
in the near future as for storage channels.

In particular for information flow properties it will be-
come much more relevant how detailed the base level
machine model is. For functional correctness one can
reason with fairly high-level machine abstractions. If
the intention is to prove absence of storage channels via
caches, buses, or device interactions, machine models
would need to become much more concrete, and thereby
larger and more complex. While some examples ex-
ist [3], we do not expect this to happen soon on a larger
scale. It is more likely that we will have to live with
hardware models that are too abstract to capture all such
effects. Since a noninterference proof for instance will
only be up to effects visible in the model, we will still

need traditional assurance and risk mitigation techniques
to address such channels.

Building Systems Assuming we have proved security
properties about our kernel, what are the challenges in
building and proving secure systems with them?

The kind of systems we expect to prove security prop-
erties about are systems in the spirit of MILS architec-
tures [1]: security is built into the architecture of the sys-
tem, component boundaries are enforced by the kernel,
communication happens only via clearly defined chan-
nels, most components are untrusted, and only a few
small trusted components exist.

The trusted components are those that have the author-
ity to subvert the security policy—we will need to prove
down to the code level of each such component that this
authority is not misused. Untrusted components in con-
trast will be assumed to do anything in their power to
subvert the system. We constrain their power via ker-
nel mechanisms such as access control and can rely on
this mechanism because we have proven it correct be-
fore. This means we do not have to prove anything about
the code of untrusted components which makes it possi-
ble for them to consist of large legacy code bases, such
as a whole Linux guest OS.

One immediate question is what kind of useful and
usable systems can be built in this fashion. We have pub-
lished elsewhere a small case study on an seL4-based
network router [2] that we have built in this style and
of which we have analysed its security on a high-level.
Our experience indicates that such devices with a clear
purpose and a clear security goal can be readily archi-
tected with a very small TCB (less than 1,500 lines of
code apart from the kernel), and at the same time con-
tain legacy code on the order of a million lines of code
or more. Hardware support like Intel’s IO MMUs make
it possible to even remove devices and user-level drivers
from the TCB. Another promising application area are
multilevel secure terminals. With a small TCB, these
could provide a full desktop experience and still have
strong isolation properties. In fact, a whole new design
space opens up if the kernel is actually trustworthy [7].

The high-level security analysis of such systems pro-
ceeds by formally describing the security architecture,
the behaviour of trusted components, and the security
goal. Small systems such as the network router example
can be analysed automatically on this level [2], in seL4
mainly by observing the possible flow of capabilities in
the system. The challenge is to connect this analysis to
the code level such that it remains valid.

The first technical challenge is that, while a system
may be small on a conceptual whiteboard level with tens
of objects, the implementation will already contain thou-
sands of objects to reason about, even before large legacy
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components have started up. After legacy components
are started, our network router example contains tens of
thousands of objects. For the purposes of the analysis, it
should be possible to aggregate large sets of these objects
into one object without discarding their security impact.
While reasoning about large numbers of objects presents
challenges to theorem proving tools, we think the pro-
cess of aggregation and proving that the aggregation is
correct could be mostly, if not fully, automated.

The second challenge is to prove that the code of
trusted components indeed implements the behaviour
that was assumed in the security analysis. This is sim-
ilar to code verification for kernels, but reasons from the
user’s point of view, rather than the kernel’s, and must
deal with concurrency in the system. This verification
step will likely be conducted manually.

The third challenge is to provide a correct initial policy
setup for the kernel. This setup needs to provably enforce
the architecture that is the basis for security. We think
this step can be fully automated, based on a textual policy
specification. A code generator can produce the program
or data structure that constructs the initial setup and it
can also produce a proof that the resulting initial system
state corresponds to the policy specification.

Finally, we will need to compose the parts and their
proofs into a full system such that the proofs fit together.
The correctness theorems of the kernel and its security
mechanisms are the formal basis for this composition.

All of these taken together mean that, while there are
still a number of challenges to overcome, it is feasible
to address whole system security on the code level with
formal proof. If the tools are constructed and the generic
proofs done, the verification effort for producing a new
system in this style can be largely automated. Ideally,
only the behaviour of the trusted components needs to be
verified manually and even that effort could be reduced
if higher-level programming languages and runtime sys-
tems can be employed.

5 Conclusion

There is a gap between high-level idealised security
properties and the properties that hold of real kernels.
Since we now know that we can produce kernel models
that are connected to code by proof, we can and should
make statements about abstract security properties on
real systems, all the way down to the code level.

The value of such proofs is not just as a tool in con-
structing secure systems. It is to know when you are
done, and to be able to provide evidence to others that
you have achieved the goal.

Proof will only give us strong assurance up to the de-
tail visible in the base level model, but this is a huge step
forward over what we have now. Traditional techniques

and risk mitigation for covert channels can then be em-
ployed in a much more focused way and can be informed
by the precise assumptions made in the proof.

For truly security-critical systems we should start de-
manding full proofs of security, down to the implemen-
tation level. These proofs are not only necessary but are
now feasible at reasonable cost.
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