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Abstract

This paper introduces guaranteed data lifetime, a novel
system property ensuring that sensitive data cannot be
retrieved from a system beyond a specified time. The
trivial way to achieve this is to “reboot”; however, this is
disruptive from the user’s perspective, and may not even
eliminate disk copies. We discuss an alternate approach
based on state re-incarnation where data expiry is com-
pletely transparent to the user, and can be used even if the
system is not designed a priori to provide the property.

1 Introduction

Once a piece of data is given as input to an application,
it is difficult to enforce policies on how long such data
is retained on the system hosting the application (e.g., in
memory, or on disk), if the application is not designed to
support such policies a priori.

For instance, consider a user who issues a sensitive
command in her bash session. She desires that this com-
mand not be retained in memory or disk, and deletes
her command history file. As another example, consider
a user who uses Outlook to retrieve a sensitive email,
which she immediately deletes after reading. Her intent
is to ensure that the data is not retrievable from the com-
puter anymore. In these cases, the user has no guarantee
that wiping her history file or deleting an email is suf-
ficient to ensure that no part of her sensitive data is re-
trievable from memory or on disk; she may have copied
it to the clipboard by mistake or she may have copied the
data from one email to another or the application may
have cached it in memory. Such retention of data long
beyond the usage period is very common [6].

A system ensuring that a particular piece of sensitive
data given as input to an application is not retrievable
from the system after a certain lifetime is said to have the
guaranteed data lifetime property. This property helps
achieve the “least privilege” principle: data should not

persist in the system beyond the minimum duration re-
quired for its processing. This protects the data from
leakage upon system compromise and from other sub-
sequent malicious users of the system.

This problem has been addressed before in the liter-
ature; for instance, Perlman et al. [11] addresses cryp-
tographic time-based data release policies that control
when data is revealed to an application, while Chow et
al. [7] and Borders et al. [3] scrub sensitive data once the
application or user (respectively) are done with it. We
aim to achieve the same property under a much tighter
interpretation: our goal goes beyond data release to data
in-use within an application without any explicit applica-
tion support. To the best of our knowledge, this property
has not been discussed before in the literature.

This property is easy to achieve if the application sup-
ports such an option (e.g., some enterprise email clients
support time-based deletion). However, since most ap-
plications do not support lifetime enforcement, the prob-
lem is much harder to solve in practice. For instance, an
application may cache data on disk, or it may use lazy de-
allocation. This precludes the use of existing approaches
(e.g., shredding [7]) that rely on scrubbing memory at
de-allocation. Alternatively, one could use virtual ma-
chines to isolate the application processing the sensitive
data. For instance, the user can initiate a virtual machine
that hosts her email client, and then tear down the vir-
tual machine and the application upon session comple-
tion [12, 3]. This approach provides coarse granularity,
since everything a user does in the temporary VM, in-
cluding other received emails, is disposed of; it also re-
quires considerable change in user behavior.

In this work, we explore how to obtain this property
from a legacy application on a fine granularity. We en-
vision a system-wide “incognito” mode on a legacy sys-
tem. This is a hard problem since an application may
store input data in memory and on disk; even if one iden-
tifies such locations, it is not possible to “zero” out these
locations unless the application has explicitly deallocated



or deleted them. Doing so would corrupt internal invari-
ants that the application expects from in-memory and on-
disk data structures (for instance, if an email is cached,
with its length followed by the contents of the email, ze-
roing out length and contents could crash the program).

We have three main requirements. First, we aim to
offer guaranteed lifetime bounds irrespective of any ap-
plication behavior. Second, the tool must not interfere
with the correctness of application integrity; when en-
suring the time bound, the application should not crash.
Third, we aim to ensure that the user’s interaction with
her applications should be the same as before; she has a
completely seamless experience.

Our key observation towards meeting these require-
ments is the concept of state equivalence. We observe
that for any program state computed from sensitive user
data, there usually exists an equivalent program state not
derived from the sensitive data. We say that two program
states are equivalent iff the portions of state not derived
from sensitive data are the same.

In order to meet the lifetime bound, at the time of data
expiry, we replace the application state with an equiva-
lent one through a process of state re-incarnation. We
force the program to an equivalent state by rolling back
execution to a pristine state and then replaying a mod-
ified version of the original sensitive input. The exact
perturbation we perform to the input stream depends on
our notion of equivalence: we will define this later. This
approach meets all our requirements; it does not depend
on the application being lifetime-aware, it maintains ap-
plication integrity, and the user need not modify her in-
teraction with the system. We will now describe our ap-
proach and highlight the main challenges in realizing it,
followed by preliminary results.

In this work, we assume that the user wishes to wipe
the data from her machine only, not from other machines
to which her data may have been sent. The distributed
case can be handled by suitably tagging network data
with markers (as in, distributed information flow con-
trol), but it is beyond the scope of this work.

2 Related Work

Our goals differ from existing work in that we aim to
erase any in-memory and on-disk traces of sensitive data
after the data has been seen by the application, while
the application is still running, and without requiring any
change in the user behavior. We now discuss work with
closely-related objectives. Chow et al. [7] provide se-
cure de-allocation of sensitive data; as soon as any data
(or memory pages) is de-allocated by the application (or
kernel), it is promptly zeroed out. In contrast, we do not
require that the application de-allocate the data before we
expire it; thus, we do not rely on timely de-allocation by

the application. Borders et al. [3] discuss an approach
where any sensitive data is entered by the user into a
stand-alone virtual machine which is disposed after use.
Though simpler than our approach, it requires the user
to interact with two different copies of the application,
and any changes made to the “sensitive” VM are lost
upon completion. Our system offers an alternative that
requires no changes on user behavior. TightLip [13] uses
shadow processes to prevent data leakage from an appli-
cation to external machines. When a process receives a
sensitive input, a shadow process is created that receives
a scrubbed version of the sensitive input; any differences
in visible output (e.g., network communication) between
these two processes indicates a possible leakage of confi-
dential information. Though the replay phase of our ap-
proach is somewhat similar to TightLip, our goal of guar-
anteed lifetime is orthogonal to Tightlip’s goal of con-
trolling data release. Finally, Perlman et al. [11] presents
a file system where policies can be associated with files
that are not readable past a certain time. The goal here is
that a sender sends a file encrypted using a key that is re-
trievable from a master server only during a certain time;
the system presents a design for the key management re-
quired at the server and the corresponding access mech-
anisms at the recipient. Our system’s goal is comple-
mentary to these goals; they aim to achieve time-based
guarantees on data release, whereas we are concerned
with enforcing guarantees on data that has already been
released. Our work is also related to Retro [9]; their sys-
tem aims to ”undo” the effects of one specific action to
a system (say, a successful network intrusion) by using
checkpointing, rollback, and re-execution based on pred-
icates. The main difference from our work is that we
wipe all traces of sensitive data from a system in the face
of unaware (and not explicitly adversarial) applications.

3 Our Approach: State Re-incarnation

The starting point of our approach is that, since it is
not possible to redact data once seen by an application,
one has to instead take an application snapshot before
it receives said sensitive data, and then restore it to this
checkpoint once data lifetime has expired. However, in
doing so, the application would lose all state, including
changes that the user wishes to persist. To prevent this,
we log all inputs to the application after it receives the
sensitive data, and then initiate replay. Logging is nec-
essary to handle the non-determinism inherent in appli-
cations; for instance, any calls to a random-number gen-
erator or file contents (which may change) need to be re-
played as such. However, straightforward replay would
leak the sensitive data; instead, we perturb the input so
that the application no longer sees any sensitive data.
Thus the application state at the end of replay cannot in-



clude any data derived from the sensitive information.
The image of the running application is then replaced
with the re-incarnated version from replay.

We note that if the developer can architect her program
in a certain fashion, other approaches may be possible
(e.g., Micro-rebooting [4]). However, since most ap-
plications do not support lifetime enforcement directly,
we resort to a more heavy-weight run-time solution.
Our run-time approach operates in three stages imple-
mented via an application-level or OS-level framework.
For now, we assume that the sensitive data is pro-
cessed in memory by a single application; we will later
discuss the case when multiple applications are involved.

Identifying Sensitive Input: The user needs a
mechanism to communicate what part of her input is
sensitive. This input may be delivered to the application
over any channel (e.g., keyboard, network). We envision
two ways to achieve this. The first is meant for keyboard
input; the user can prefix and suffix her sensitive input
with a specific character sequence. This sequence
is intercepted by our framework and is not delivered
to the application; our framework can provide visual
indication that secure data entry is in progress. The
character sequence can also indicate the data lifetime,
or a default lifetime can be used. The second method
is suited for input from a data source (e.g., a network,
or file); a simple data-specific plugin can be used to
identify sensitive data. For instance, in an enterprise, a
specific SMTP option can be added (by the sender) that
indicates the lifetime of an email. A SMTP plugin can
determine the sensitivity of a particular network input
before delivering it to the application.

Checkpoints/Logs: Once sensitive input is identified,
the framework initiates a checkpoint of the application
receiving the input. This includes all pertinent applica-
tion state, including memory, registers, execution state
of any threads (e.g., stack). Further, all subsequent
inputs to the application, whether sensitive or not, are
logged. This can be achieved by logging return values at
the syscall level using, for instance, binary translation.

Perturbed Replay: The key part of the system con-
cerns actions initiated when the lifetime of a sensitive in-
put expires. If the application that received the sensitive
input has terminated, then no action need be initiated (we
are assuming that the memory belonging to the process
is scrubbed out immediately). Otherwise, the system re-
stores the application to the checkpoint corresponding
to data entry. It then replays all subsequent inputs af-
ter which the system resumes. The goal is to ensure that
the application is left in a equivalent state; we discuss
this issue in detail subsequently.

This approach can be extended to multiple data items.
Multiple checkpoints are maintained when each data
item is seen by the application; during replay at the ex-
piry of a data item D, the checkpoints of subsequent data
items D′ received by the application are updated.

4 Challenges

State re-incarnation raises several interesting questions:
fidelity, pervasiveness, containment, and overhead.

Fidelity: The key question regarding perturbed replay is
that application state at the completion of replay should
be concordant with the user’s expectations. While the
constraint from the secrecy aspect is clear (an adversary
cannot retrieve the sensitive data from the application
state), it is difficult to define exactly what the user’s ex-
pectations correspond to. Thus, the notion of state equiv-
alence is not a precise one.

Consider the case where Outlook obtains a sensitive
email over the network; our mechanism takes a suitable
checkpoint and records subsequent input. The user reads
the email, and then navigates (say, using a down arrow)
to the next (non-sensitive) email and deletes it. During
replay, the sensitive email is suitably perturbed; however,
we need to ensure that the navigation keystroke is inter-
preted in the same “context” as during the original run.
If the cursor points to a different email upon replay, then
a different email would be deleted, and thus the user’s
expectations would be violated. The general problem is
that inputs to the applications subsequent to the sensitive
input from the user or the network only make sense in
the context of the sensitive data. We now consider op-
tions for perturbing the input stream, and examine the
impact on secrecy and fidelity:
Replay with Omission: This is the simplest approach one
can envision; sensitive input is omitted during replay.
While this approach guarantees secrecy (since the appli-
cation never sees sensitive input in replay), the fidelity of
this approach is poor. In the example of Outlook naviga-
tion, if the sensitive email is never seen by the application
in replay, an incorrect email may be deleted.
Replay with Substitution: In this method, the sensitive
input is replaced with non-confidential boiler-plate input
(e.g., : “This is a sensitive email that has expired.”) dur-
ing replay. This clearly provides secrecy. With respect to
fidelity, while this works in the email navigation exam-
ple, there are several counter-examples. For instance, if
the original email differs in length from the boiler-plate
input, replay may deviate considerably.
Replay With Consistent Substitution: This approach is
similar to replay with substitution, with one difference:
the substituted input is such that the application follows
exactly the same control flow as before. The instructions



executed by the application can be classified as data ma-
nipulation instructions (e.g., mov ax, bx) or unconditional
and conditional jumps (e.g., jnz address). We compute
the substituted input such that all conditional jumps play
out in the same way as before using standard symbolic
execution and constraint solving (e.g., as in ODR [1]). It
is possible to improve on this by marking what portion of
the sensitive data has already been deleted by the system;
such data need not be re-computed.

Regarding fidelity, note that though the execution path
remains the same, the output may be different. For in-
stance, if the sensitive email is written to disk, during re-
play, the substituted input will end up on on disk instead.
Also note that, secrecy and high fidelity can be contradic-
tory requirements; the computed input may reveal some
information about the sensitive input (e.g., typically, pro-
cessing depends on input length; so the perturbed in-
put would reveal the length of the sensitive input). This
trade-off is fundamental: restoring the application to any
sort of meaningful state requires the substituted input to
reveal some information. In practice, this information
may be fairly low; in the typical processing of a message
in an application’s data plane, we expect few conditional
jumps based on the contents of the email. Thus, the num-
ber of constraints that need to be solved (each of which
reveals some information about the sensitive input due to
comparison operations) will be minimal in practice. Fur-
ther, methods to estimate this leakage by considering all
conditional jumps using a conservative upper-bound are
known (e.g., Castro et al. [5]). Thus, a threshold can be
set on the information leakage by the user; if this thresh-
old is exceeded, the system can request the user to shut-
down the application as a fallback.

Each of these perturbation options adhere to various
notions of state equivalence; we believe that perturbed
replay with consistent substitution offers the best
trade-off with respect to fidelity and secrecy. We plan to
evaluate this by experimenting with typical applications
(e.g., web browsers, email clients) and use scenarios
(e.g., entering password, processing sensitive emails).

Pervasiveness: The second challenge in our approach is
to handle all possible ways in which sensitive data may
linger in a system. Apart from the application receiv-
ing the sensitive data, OS modules may store copies of
the data as well. Application input is typically processed
by the OS (e.g., device drivers, the network stack, the
keyboard buffering system) before it is sent to the appli-
cation. The same applies for screen or network output.
These software modules can buffer this information; ei-
ther intentionally (e.g., to maintain some history for var-
ious statistics) or accidentally (e.g., maintaining a static
buffer for keyboard events is typical; sensitive data may
linger in such buffers).

To address such data retention in the OS, our approach
can be applied at the OS level. One option is to use a
virtual machine monitor (VMM); our framework can
reside in the VMM to record all inputs and outputs to the
OS. Of course, this begs the question of how to ensure
that no data is retained by the newly introduced VMM
layer: we argue that a VMM is typically simple enough
so that its code can be audited to rule out such leaks. An
alternative is to interpose our framework on the VMM;
for instance, allow the rollback of certain portions of the
VMM’s memory. We believe that relying on a VMM
that does not buffer data or offers an explicit API to
control buffering to be a much simpler option.

Containment: The application of interest may commu-
nicate with other entities: processes on the same machine
or remote machines. This means that: (a) outputs sent to
these entities may leak information. (b) inputs by these
entities may only apply to the original execution.

Regarding outputs to processes on the same machine,
when using an application-level replay mechanism, one
can recursively apply the notion of checkpointing, log-
ging, and replay. For outputs related to sensitive data,
the recipient processes can be checkpointed. We use dy-
namic taint tracking (e.g., Newsome et al. [10]) for the
latter. During replay with consistent substitution, any
constraints implied by the execution of the recipient pro-
cess are also considered in computing the substitution in-
put. This issue does not arise for a VMM-level replay
mechanism; in that case, the framework sees only a sin-
gle “blob” of execution, which includes the OS and all
applications within it.

The issue that arises in both application-level replay
and VMM-level replay is data sent to remote machines.
In this case, there are two alternatives we plan to explore.
First, if the remote machine is within the enterprise, we
can first verify that lifetime enforcement is supported on
that machine (using standard attestation techniques), and
then convey these guarantees remotely. Alternatively, if
the machine is external, outputs can either be delayed
until the lifetime expires and the output based on the per-
turbed input can be computed. This works if the appli-
cation does not need to receive a response in order to
proceed; in this case, we can simply notify the user that
her data is being released externally, and the choice to
permit or disallow this is up to the user.

Regarding inputs from other entities to the applica-
tion, the fidelity issue arises. For instance, when the
password is sent by the browser to an external website,
the website may return a page corresponding to success-
ful authentication. Such inputs can be replayed as such.
It is possible however that the external machine mirrors
the sensitive data; in this case, taint tracking is “lost”
because the external machine is not under our sphere of



influence. However, we believe that such occasions of
mirroring are rare; to handle exceptions, it is possible to
add protocol level tainting rules to ensure that such taints
are propagated as well. One can, for instance, identify
matching requests and responses [2] and suitably modify
the response from the web server during replay in
accordance with the perturbed request. Alternatively,
such external inputs may simply be ignored without
affecting replay; the application may not rely on using
the external input. We plan to examine the effect of this
in our experiments with typical applications.

Overhead: The final challenge is in ensuring that the
system does not adversely impact performance. Since
our target here is client-side systems (as opposed to heav-
ily loaded servers), we do have some leeway in terms of
overhead. The overhead of identifying sensitive data is
minimal for both dynamic methods (e.g., keyboard mark-
ers) and configuration-based methods (e.g., relying on
marked email). The overhead of checkpointing is also
one-time and incurred only at the receipt of sensitive in-
formation. Logging is more of a burden since it is re-
quired at all times subsequent to the receipt of sensitive
information. We believe this can be done with an over-
head of about 3X which may be reasonable for client-
side systems especially with the advent of multi-core
systems (this estimate is from Practical Data Confine-
ment [8] when the volume of sensitive data is 20% of to-
tal data). The overhead of replay involves both the com-
putation of suitable substitution input as well as replay-
ing past input. The main advantage here is that replay
can be initiated in parallel with the usage of the appli-
cation; the replay can operate on a shadow image of the
application. Even if the data lifetime is on the order of
days, we expect that typical applications will not process
old data frequently; thus, the overhead of logging and re-
play would be proportional to the number of instructions
that operate on tainted data, rather than data lifetime.

We evaluated this overhead using an application-level
logging and replay mechanism based on binary transla-
tion (Valgrind). To obtain preliminary feasibility results,
we focus currently on logging; logging is active continu-
ously, while perturbed replay is invoked only when life-
time expires. We ran bash using a harness and consider
all keyboard input as sensitive. We typed in a command
at the prompt, and measured the overhead.

Our harness uses binary translation to replace every
instruction with an instrumented version that propagates
taint suitably. Because of translation, during invocation
of bash, there is an initial delay (5 seconds), after which
performance impact during interactive use is not notice-
able. We typed in a single command and measured the
number of instructions executed. Out of a total of 33,481
instructions, only 266 of them ever process any tainted

input. This bodes well since the overhead of constraint
solving and replay is determined by the number of in-
structions operating on tainting data. These 266 instruc-
tions generated 9730 constraints (each instruction may
be executed multiple times, for instance, in a loop). Re-
sults in previous work (e.g., ODR [1]) for comparable
number of constraints indicate that replay with consis-
tent substitution holds promise.

5 Conclusion

We introduce a novel approach to ensure that sensitive
data is seamlessly “scrubbed” once its lifetime expires.
Our approach ensures this without any application sup-
port and without impacting application correctness or the
user experience. This approach raises a number of chal-
lenges; we believe that the issue of fidelity will be the
hardest to handle, and hope to evaluate it through expe-
riences with real applications.
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