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1 Introduction
Today, when people need their computers repaired, their
process is not very different from hiring someone to fix a
television: they either bring the computer to a repair ser-
vice [1, 3], or they call a technician (or family member)
and ask for a house call. This process is inconvenient. It
also risks the privacy of customers’ data and the integrity
of their systems: repair services have gained notoriety for
stealing personal data from customers [22] or otherwise
intruding on their privacy [7].

Remote desktops [2, 4, 5] avoid physical movement
but still require that the customer make a choice. The cus-
tomer can spend time and monitor the repairer (though
many customers of repair services probably do not have
the technical savvy to detect spurious actions in the first
place). Or, the customer can save time and ignore the re-
pairer, giving him carte blanche, just as if the computer
were in the shop. Neither choice seems great.

The purpose of this paper is to articulate a new vision
for repair. This vision is motivated by three trends:
• Software repairs. We surveyed retail repair services

and learned that a large majority of repairs today in-
volve software changes only (§2). Such repairs do not
inherently require travel.

• Virtual machines. Many computers today, even desk-
tops, include virtualization technology, which could
allow customers to ship their computers electroni-
cally [9, 19] (by sending the virtual machine image)
and enforce guarantees against the repairer (by imple-
menting protections in the virtual machine monitor).

• Outsourcing. Service providers have long offered
value-added services, such as desktop management
and IT consulting. Lately, commodity computing
has followed an analogous path, migrating to well-
provisioned, off-site, partially anonymous service
providers (often known as the cloud).
We call our vision repair from a chair: let a customer,

at the press of a button, electronically ship a computer to
a third party repairer whom the customer never meets; let
the repairer be untrusted by the customer (meaning that
the customer is protected against repairer error, whether
accidental or intentional); and let the repair happen asyn-
chronously. By asynchronously, we mean that the cus-
tomer does not need to monitor the repair in real time.

Note that the context for this vision is retail repair,
in contrast with much academic work on troubleshoot-
ing [8, 11, 14, 15, 17, 18, 20, 21, 23, 25–28]. There, an

experienced system administrator is faced with a com-
plex configuration issue (say a subtly wrong token in
httpd.conf), and this person trusts the troubleshooter
(or they are the same person). In our setting, however,
users are inexperienced (so much so that they would be
unable to use the above-cited tools), the problems are rel-
atively easy for the troubleshooter (as indicated by our
survey), and the customer does not fully trust the repairer.
Thus, the technical challenges in our scenario are differ-
ent (though the tools above would be useful to the re-
pairer so are complementary to our work).

Our challenges are, first, to protect the privacy of the
customer’s data. For example, if the repairer needs to cor-
rect a misconfiguration in a virus checker, he should not
be able to see private vacation photos. We also have to
protect the integrity of the customer’s system: if the re-
pairer executes an invalid repair, a customer-side module
should reject it or roll it back if the customer later discov-
ers a problem. Last, we want to protect availability: the
customer should be able to keep working during the re-
pair. This requires a way to merge the repairer’s changes
with those of the customer.

A key building block for solving these problems
comes from the rich literature on dependency track-
ing [8, 15, 17, 18, 20, 21, 23, 28] and, in particular, se-
lective redo [11, 14], which we (ironically) use to protect
against the repairer. We will also borrow other work, in-
cluding virtual machine migration [6, 10, 19].

There are also new problems to solve: protecting cus-
tomer privacy while allowing the repairer to work, stati-
cally validating repairs, merging the repairer’s changes
with the user’s, dependency tracking across OS up-
grades, coherently composing the aforementioned, and
more. However, we do not yet have complete solutions.
Rather, this paper’s primary contributions are articulat-
ing both the vision and the research agenda that must be
addressed to realize it. Secondary contributions are tar-
geting retail repair (which implies a new model: easy re-
pairs but untrusted repairers) and conducting an inquiry
of current retail repair services, which we report next.

2 An inquiry into retail repair
The types of repairs that the architecture should ac-
commodate and whether the vision even makes sense
strongly depend on the nature of today’s repairs. Accord-
ingly, we now present a preliminary study of retail repair,
deferring a proposed architecture to the next section.

Based on the tech support experience of one of the au-
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On a scale from 1 to 5 (1 = never, 3 = sometimes, 5 = always), µ σ

How often do you repair a computer by . . .
. . . making a registry or other settings change? 3.7 0.6
. . . (re)installing an application program but not the entire OS? 3.2 1.0
. . . (re)installing a driver? 2.6 1.0
. . . (re)installing an automatic update from a software vendor? 2.6 1.4
. . . reinstalling the operating system? 2.7 0.7
. . . fixing or replacing a hard drive or other H/W component? 3.5 0.7
How often do you need access to the user’s application data,
such as photos, etc., in order to repair a computer?

1.5 0.7

Figure 1—Means and standard deviations of selected responses
to Geek Squad survey in phase 2 (n = 11).

thors, we expected to hear that software issues are much
more common than hardware issues and that, of the soft-
ware fixes, application-level configuration changes are
more common than OS re-installs. Our inquiry confirmed
these impressions. It has three components: (1) telephone
surveys of Best Buy Geek Squads in and around Austin;
(2) incognito visits to six Apple Genius Bars; and (3) an
analysis of 18 months of trouble tickets handled by UT
Austin’s Information Technology Services.

Our survey of the Geek Squads had two phases: one to
gather a general sense of retail repair and the other to col-
lect concrete data. In both phases, we cold-called Geek
Squads in Best Buys in and around Austin and asked the
agent who answered the telephone if he or she had time
for a short survey. Of the ten stores that we called in the
first phase, agents at seven agreed to participate.

Nearly all of the phase 1 respondents said that hard-
ware problems were relatively uncommon, though they
varied in their estimates of the exact proportion of hard-
ware vs. software repairs. We also heard from every
agent that they reinstall the OS in fewer than 20% of
cases. Without exception, the agents named viruses as the
most common customer issue. Typically, a Geek Squad
agent is faced with a malware infection. Once the prob-
lem is diagnosed, the agent uses proprietary tools that at-
tempt to clean the customer’s computer, usually without
reinstalling the operating system.

The second phase was more rigorous. It consisted of
ten questions on a five point scale, and half of the surveys
were conducted by someone who is not one of the au-
thors and who did not know our hypotheses about which
repairs are most common. Of the eighteen stores that we
called, agents at eleven agreed to participate.

Figure 1 summarizes the second phase. Software re-
pairs are apparently common. Indeed, looking at the indi-
vidual responses, nine of eleven rated “making a registry
or other settings change” at least as high (in frequency)
as “replacing a hard drive or other hardware component”.
And application-level repairs appear more common than
OS re-installs: nine of ten rated “making a registry or
other settings change” at least as high as “reinstalling the
operating system” (it was nine of ten, not eleven, because

in one case we forgot to ask one of the questions). These
findings are consistent with phase 1.

Next, we made incognito visits to six Apple Genius
Bars (three in the Bay Area and one each in Austin, Fort
Worth, and New York City). While the Geniuses were
repairing our laptops, we asked them about their work.
With the disclaimer that the plural of “anecdote” is not
“data”, we heard that the Geniuses deal with a mix of
hardware and software, and that they usually fix soft-
ware problems with a settings change, though they also
reinstall the OS fairly often—most of which is consistent
with the surveys. In contrast to the Geeks, the Geniuses
were adamant about never seeing malware.

The findings above are obviously not scientific, but
they are buttressed by a much larger dataset. We received
111,824 anonymized trouble tickets, for January 1, 2009
to June 8, 2010, from UT Austin’s central Information
Technology Services, which provides a range of IT sup-
port to 75,000 students, faculty, and staff. We wanted to
know what percentage of repairs involve software versus
hardware. We filtered the trouble tickets to remove issues
unrelated to repair (such as network account administra-
tion and “how-to” questions). Of the remaining 15,572
tickets, the breakdown is 76% software, 24% hardware.

Our inquiry has been suggestive, but of course it is
not conclusive or complete. First, despite the techs’ best
intentions, we cannot validate their diagnoses or reme-
dies. Second, for the surveys and visits, the sample size
was small. Third, all of the surveys and visits would
ideally have been conducted by neutral investigators. A
full-fledged empirical study is future work. For now, we
wanted to understand retail repair enough to guide our
architecture. Moreover, even if our estimates are inaccu-
rate, as long as some significant fraction of repairs are
software-only (and specifically application-only, for our
first cut architecture), the architecture still has use.

3 Model and architecture
We now describe our model and architecture, deferring
the accompanying challenges to the next section. Recall
that in our retail repair setting, repairs are often easy,
customers are technically inexperienced, and the repairer
is not trusted. Thus, our model does not assume that
the repairer acts correctly: accidentally or intentionally,
he may try to make spurious repairs or violate the cus-
tomer’s privacy. An assumption of our model, in this sec-
tion and in most of the next, is that repairs do not need
to modify the kernel installed on the customer’s system.
This restriction simplifies some of the challenges, and it’s
supported by our empirical inquiry. On the other hand,
the restriction is sizable, and we revisit it later (in §4.4).

Figure 2 depicts our envisioned architecture. The cus-
tomer’s computer is a virtual machine (VM), though in
normal operation it need not run on a virtual machine
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Figure 2—Architecture of repair from a chair.

monitor (VMM). The customer’s files are partitioned into
a public and a private part. (We address the feasibility of
such a separation in §4.1.) The public part includes ap-
plications, system configuration, and kernel binaries and
modules. The private part includes customer data.

While the customer works, the guest operating system
tracks actions and dependencies [8, 11, 14, 15, 17, 18, 20,
21, 23, 28]; this tracking has several uses in our architec-
ture. Our choice of encoding is an action history graph,
a dependency graph proposed by RETRO [14] that stores
the full contents of actions, not just causal links between
them, making selective redo accurate and efficient. The
customer’s system also contains a repair helper, which
is divided into a VMM piece and a guest OS piece.

When the customer requires a repair, the VMM piece
of the repair helper uses VM migration technology [6,
10, 19] to ship to the repairer a copy of the file system
with the private part blinded. A simple way to implement
blinding is to not send the data; another way is to en-
crypt it. When the repairer wants access to private data,
he makes requests to the customer, who can thus give
informed consent (or decline). The customer can deblind
individual files selectively and groups of them efficiently.

The repairer carries out the repair inside the image as
it runs on a VMM. Note that the repairer’s actions should
generate an action history graph (since the customer-side
OS tracks dependencies and since the repairer is not sup-
posed to make kernel modifications). In fact, the repairer
must encode any repair as an action history graph, since
the OS piece of the customer’s repair helper expects an
action history sub-graph (rather than, say, a new image).

Given this sub-graph, the OS piece of the customer’s
repair helper (1) checks that the actions constitute valid
repairs (for instance, that they do not modify the kernel
or that they adhere to a defined list of applicable repairs);
(2) leaves the door open to roll back the repairer’s ac-
tions (if the repair is later found to be spurious) with-
out discarding the customer’s post-repair changes; and
(3) merges the repairer’s actions with any changes that
the customer made while working during the repair.

Having outlined this architecture, we next outline
some of the problems that must be solved to realize it.

4 Challenges and research

4.1 Privacy

To diagnose and fix problems, repairers sometimes need
to see private files. For example, sensitive data may be
in the configuration files involved in a repair [13]. For
this reason and others, privacy raises challenges. To ad-
dress them, we will walk through a series of tools below.
These tools are not technically sophisticated, but the fact
that they appear sufficient is itself interesting (at least to
us). Indeed, the main contribution of the discussion be-
low is to choose, from a wide design space, a concrete
usage model and workable user experience for both re-
pairer and customer. As a bonus, this model seems to
admit a simple implementation.

Our goal here is a natural one: to limit disclosure to
what is needed for the task at hand. Two observations
put this goal within reach. First, most of a user’s per-
sonal files are in well-known media-specific directories
(e.g., ~/Photos) that are rarely involved in computer
problems, so these files are both easy to find and con-
venient to hide. Second, our personal experience in tech-
nical support is that most computer problems result from
misconfigurations local to one file or a small set.

Thus, it makes sense for the repair helper to impose
a default-deny policy on all potentially private data—
including user-specific configuration files—but to sup-
port deblinding exchanges in which the repairer petitions
the customer for access. When a repairer can read a di-
rectory but not the contents of its files, he can issue fur-
ther deblinding requests. To minimize back and forth,
inclusions and exclusions can be phrased recursively
(e.g., “everything in .firefox, except for anything in
.firefox/favorites”). The customer can then choose
whether to grant these requests, possibly partially. We
conjecture that we can empower even unsophisticated
customers to arbitrate these decisions, using heuristic
tools that clarify requests (e.g., “Careful: .firefox/db
contains your passwords.”). Validating this conjecture re-
quires empirical inquiry (about the precise contents of
repairs and about usability) and is future work.

Blinding and deblinding can be implemented simply
by removing the contents of sensitive files from the file
system image before shipping it to the repairer. To grant
a deblinding request is to authorize one’s repair helper to
send a set of files to the repairer. An alternate implemen-
tation is to ship all the contents of the file system, suit-
ably encrypted: eCryptfs [12], for example, offers per-
file encryption and the ability to selectively deblind re-
motely. Note that, being in need of repair, the customer’s
OS may have a damaged network stack. Therefore, part
of the deblinding machinery must be implemented in the
VMM-level, not the OS-level, repair helper; identifying
an appropriate interface between the two is future work.
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While this discussion has so far concerned files, it
extends to configuration databases like the Windows
Registry, since we can map their hierarchy into the
file system. For example, we can represent a registry
key \\HKEYS\A\B\C in the blinded image as a file
\\Registry\HKEYS\A\B\C.

The clean split that we presumed above is not always
possible: the repairer must sometimes scan the whole
disk (e.g., when searching for malware). For this case,
we propose a restricted interface for executing diagnostic
scripts under the customer’s physical control. To fit into
the broader deblinding scheme, such a script should pro-
duce a list of file names, say those whose contents match
a regular expression. The repairer sets the regexps (e.g.,
a set of virus signatures), and the customer executes the
script, optionally sanitizing the results before returning
them to the repairer. One way to execute the script safely
is to flash clone [24] the customer’s machine into a dis-
posable VM from which the VMM prevents data from
exiting. Two research questions here are whether such an
interface suffices for many retail repairs, and, if not, how
to expand the interface and mechanism to let the repairer
extract information beyond a list of file names.

Of course, the approach described here is not perfect.
On a technical level, it does not strictly limit the flow
of private data. Yet, we would guess that leaks of pri-
vate data to locations that are repairer-visible and pre-
dictable will be rare (we address malicious repairs in
§4.3), and in this retail setting (vs. a mission-critical
one), we can probably tolerate an imperfect approach.
On a social level, the repairer could entice, needle, or ca-
jole the customer into deblinding a lot. This problem can
be mitigated (e.g., with heuristics alerting the customer
to social engineering) but not eliminated: it is inherent in
any mechanism that gives final authority to humans.

4.2 Availability and consistency

We want to allow the customer to keep working dur-
ing the repair. But then how can we merge the repairer’s
changes with any that the customer made since shipping
a copy of the computer to the repairer? At a high level,
we can accomplish the merge by grafting the repairer’s
changes into the customer-side action history graph.

That is, when the repair helper receives the repairer’s
action history sub-graph, it creates a dummy action that
logically happens at the time when the customer’s sys-
tem shipped to the repairer. After a repair, the dummy
action is always executed, and its redo action installs into
the graph all of the repairer’s actions (and their depen-
dencies). By modifying the dependency tracker to store
a vector clock for each event, rather than a timestamp,
we impose the natural partial order on events. The repair
helper can thus execute a roll-forward loop, borrowed
from RETRO [14], to apply the customer’s and the re-

pairer’s changes, while flagging conflicting changes.
Note that the action history graph’s fine-grained de-

pendencies are critical. With coarse-grained dependen-
cies, we would have many more conflicts between re-
pairer and customer. Of course conflicts are still possible,
but our scenario is not inherently to blame: conflicts exist
in any undo/redo system. Our scenario likely exacerbates
the problem, but the extent to which it does so is another
empirical question for us to investigate.

4.3 Protecting against spurious repairs

We would like to protect the customer’s computer against
spurious repairs. While a perfect solution to this problem
seems impossible even in theory, our architecture could
protect a customer far more than today’s repair model
does, if several challenges are addressed.

First, a customer (or subsequent repairer) should be
able to roll back a repair, perhaps weeks later (if the cus-
tomer learns that the repairer was malicious or if a sub-
sequent repairer finds a spurious repair). The challenge
is retaining a customer’s updates. To address this chal-
lenge, we can use selective redo [11, 14]. A key mech-
anism here is the action history graph, which will hold
the grafted-in repairer changes (§4.2). A subtlety is that
the repairer’s actions might be most naturally phrased as
undoing prior customer actions (if the repairer received
a sanitized action history graph from the customer). But
such undo actions could be encoded in the action history
graph, with natural extensions to RETRO [14].

Second, to preserve the integrity of the repair helper
and the dependency tracker, the repair must not modify
the guest kernel or its configuration. Since protecting the
disk blocks that house kernel binaries and related con-
figurations is straightforward, the challenge here is de-
fending against indirect malicious repairs (e.g., installing
a program that loads a module that subverts the repair
helper). One response is to create a permission model
that is more fine-grained than that of today’s machines.
We would need to create a user, repairer, with per-
mission to change the configuration state of a machine
but not to load kernel modules or modify kernel state on
disk. Then, during replay, the repair helper must enforce
that the repairer’s actions happen as repairer.

Third, we would like the repair helper to reject invalid
repairs up front. While a general solution here seems im-
possible, heuristics should be useful: static analysis of
the action history graph may be possible, and prior work
applies statistical techniques to stored event traces and a
representation of the local machine to automatically an-
swer questions like, “How do I do task X?” [16] or “What
is the root cause of symptom Y?” [25, 27]. We need to ad-
just the techniques, as our questions (e.g., “Is this change
a configuration-specific version of a known repair?”, “Is
this change within the bounds of typical repairs?”) are
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easier, but our setting is more adversarial.
Apart from the heuristics above (which will never be

perfect—a repair could be, say, an insidious spy module
that later leaks customer data by HTTP POSTing it), we
can imagine a business approach with a technical compo-
nent. If repairers are expected to sign individual actions,
then malicious applications could be reliably traced to
them, making it possible to take legal action. Given that
world, the officers of retail repair services would presum-
ably restrict their employees by pre-signing only a fixed
set of repairs. How large must this set be? We conjecture,
and must validate, that it would not be prohibitive.

Ultimately, none of the above can be error-free. Our
hope instead is to protect customers far more than to-
day, by combining selective redo, guaranteed rejection
of a large class of spurious repairs, heuristic detection of
anomalous repairs, and signed repairs. This may sound
like a lot of functionality, but each piece is modular
and layered on a common primitive—the action history
graph—that is part of the architecture anyway.

4.4 Repairs that modify the kernel

We now briefly revisit our kernel-repair-not-needed as-
sumption from §3 and mention some challenges raised
by a series of increasingly intrusive repairs. What makes
the problem tractable is that in our retail setting, kernel
modifications should be only known kernel upgrades.

First, consider kernel upgrades that leave the repair
helper’s interfaces unmodified. Then, the repair helper
can conceivably authenticate the upgrade, as that upgrade
ought to be signed by the OS vendor (who also presum-
ably supplied the repair helper). The technical challenge,
given our architecture, is encoding such an upgrade (and
its signature) as an identifiable unit in the action his-
tory graph. Second, if the kernel upgrade does modify
the repair helper interface—say by changing the format
of the action history graph—then supporting undo/redo
is an added challenge. The reason is that the mid-repair
changes (including the upgrade itself) and the post-repair
changes will be encoded two different ways.

Last, we want to let the repairer provide a new OS im-
age when a damaged OS does not boot (or whenever else
the repairer prescribes an OS re-install). The VMM re-
pair helper, then, must expose an interface to the cus-
tomer, verify the new OS image, and optionally connect
the reinstall action to the prior action history graph.

5 Conclusion
There are obviously a lot of unknowns here, and our fu-
ture work is to answer the questions that we raised and
others that we did not have space to treat, such as: How
can we repair the VMM? How can we apply these ideas
to synchronous repair (where the customer is online dur-
ing the repair)? Do spurious repairs happen often? Is

asynchronous operation truly important? If the answers
to the latter two are negative, can we swap dependency
tracking for a lighter-weight mechanism? Whatever form
our system ultimately takes, we believe that the vision it-
self and the questions that it raises are worth pursuing.
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