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Abstract

Despite years of work on programming languages, pro-
gramming is still slow and error-prone. In this paper we
describe Macho, a system which combines a natural lan-
guage parser, a database of code, and an automated de-
bugger to write simple programs from natural language
and examples of their correct execution. Adding exam-
ples to natural language makes it easier for Macho to ac-
tually generate a correct program, because it can test its
candidate solutions and fix simple errors. Macho is able
to synthesize basic versions of six out of nine small core-
utils from short natural language descriptions based on
their man pages and sample runs.

1 Introduction

Programming is hard. Because computers can only exe-
cute simple instructions, the programmer must spell out
the application’s behavior in excruciating detail. Because
computers slavishly follow their instructions, any triv-
ial error will result in a crash or, worse, a security ex-
ploit. Together they make computer code difficult and
time consuming to write, read, and debug.

Programmers write software the same way they do ev-
erything else: by imitating other people. The first re-
sponse to a new problem is often to google it, and ide-
ally find code snippets or examples of library calls. The
programmer then combines these chunks of code, writes
some test cases, and makes small changes to the program
until its output is correct for the inputs he has considered.

Software engineering researchers have developed
techniques to help automate each of these parts of the
programming process. Code search tools scan through
databases of source code to find code samples related
to programmer queries. For example, SNIFF [2] uses
source code comments to help find snippets of code, and
Prospector [4] finds library calls that convert from one
language type to another. Automated debugging tools

not only help find problems [6], but sometimes even sug-
gest solutions [7]. For example, recent work by Weimer
et al. [5], describes how to use genetic programming
algorithms to modify buggy source code automatically
until the modified programs pass a set of test cases.

Although these techniques do save time, the program-
mer is still responsible for selecting code snippets, ar-
ranging them into a program, and debugging the result.
In this paper we describe Macho, a system that gener-
ates simple Java programs from a combination of natural
language, examples (unit tests), and a large repository of
Java source code (mostly from Sourceforge projects). It
contains four subsystems: a natural language parser that
maps English into database queries, a large database that
maps programmer abstractions to snippets of Java code,
a stitcher that combines code snippets in “reasonable”
ways, and an automated debugger that tests the result-
ing candidate programs against the examples and makes
simple fixes automatically.

Because database search and automated debugging are
still hard problems with immature tools, Macho’s abili-
ties are correspondingly basic. Our current version of
Macho was able to synthesize simple versions (no op-
tions, one or two arguments) of various Unix core utili-
ties from simple natural language specifications and ex-
amples of correct behavior, including versions of ls, pwd,
cat, cp, sort, and grep. Macho was unable to generate
correct solutions for wget, head, and uniq. Macho is still
under construction, but it has already provided us with
several interesting results.

Macho is a remarkably simple attack on an extraor-
dinarily difficult task. Natural language understanding is
considered one of the hardest problems in Artificial Intel-
ligence with a huge body of current research. Generaliz-
ing from examples is similarly difficult. And even once a
computer system “understands” the problem it still must
actually write suitable Java code.

Our key insight is that natural language and examples
have considerable synergy. Macho has a fighting chance
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to generate correct programs because each component
can partially correct for the mistakes of the others. For
example, a database query will return many possible re-
sults, most of which will be incorrect, but by leveraging
the type system the stitcher can eliminate many unlikely
solutions. Even more importantly, the test cases allow
Macho to partially detour around the difficult problem of
natural language processing. Modern machine learning
techniques provide probabilistic answers, whether the
question is the meaning of a piece of natural language or
the best sample function in the database to use. Backed
by its automated debugger, Macho can afford to try mul-
tiple solutions.

In addition, combining examples and natural language
greatly reduces their ambiguity: the set of programs that
satisfies both the natural language and the test cases is
much smaller than the sets that satisfy each input individ-
ually, although there are some exceptions: Macho found
it surprisingly easy to synthesize cat from a unit test us-
ing the empty files it used for generating ls. However, we
found that most of the time a program that passed even
one reasonable test case would be correct. Together nat-
ural language and examples form a fairly concrete spec-
ification.

2 Architecture

Macho’s workflow mirrors a human programmer. It
maps the natural language to implied computation, maps
those abstractions to concrete Java code, combines the
code chunks into a candidate solution, and finally de-
bugs the resulting program. The goal of each subsystem
is therefore to minimize the amount of brute force and
thereby synthesize the largest possible programs.

2.1 Natural Language Parser

Our natural language parsing subsystem attempts to ex-
tract implied chunks of computation and the data flow
between them from the words and phrases it receives,
and encode that knowledge for the database. Usually the
structure of the sentence can be directly transformed to
requested computation: verbs imply action, nouns im-
ply objects, and two nouns linked by a preposition imply
some sort of conversion code. This mapping is concep-
tually similar to previous work [1], but Macho’s database
“understands” a much larger number of concepts, includ-
ing abbreviations. In order to handle these more varied
sentences, we began with an off-the-shelf system pro-
vided by the University of Illinois Cognitive Compu-
tation group to tag individual words with their part of
speech (noun, verb, adjective, etc.) and to split sentences
apart into smaller phrases.

Our main problem was fixing the errors of the parser,
which was trained on a standard corpus of newspaper ar-
ticles, not jargon filled man pages. For example, ‘file’ is
usually a verb, like “the SEC filed charges against En-
ron today.” and print is often a noun, e.g., “Their foul
prints will not soon be cleansed from the financial sys-
tem.”. These kinds of errors were quite common.

To help detect what words were intended to act as ac-
tions, we build a graph of prepositions linking the objects
in a sentence together into a tree. A traversal of this tree
reveals the relationship between the nouns at its leaves.
When we find words that are not linked to the rest of
the sentence by this graph, we can guess that they are
misclassified verbs. The parser also provides some hints
as to likely control flow. For example, plural adjective
or adverbial phrases often imply a filter operation that is
implemented as an if statement. The description of grep
contains ‘lines matching a pattern’ which implies only
some lines will be used.

2.2 Database

As the subsystem that maps natural language abstrac-
tions to concrete Java code, the database is the engine
that powers Macho. When the database can suggest rea-
sonable code chunks, the stitching can usually find a cor-
rect solution, but when the database fails the space of
candidate programs is simply too large to succeed by
flailing randomly.

Our original plan was to use Google Code, but we al-
most immediately dismissed it as completely inadequate.
Google Code indexes a huge number of files, but it ap-
pears to only perform keyword search on the raw text of
the source files, which we found to be inadequate for our
problem. Instead, we developed our own database for
Macho.

Our first step was to obtain a data set of about 200,000
Java files from open source projects and compile them
using a special version of javac that we modified to emit
abstract syntax trees. We compiled rather than parsed be-
cause we wanted exact global locations for each function
call, and because we didn’t want to reuse broken code.
Since open source programmers are not exactly paragons
of code maintenance, only about half of our source files
compiled successfully.

Our database returns candidate methods based on in-
put and output variables, e.g. the query directory →
files would return all functions called with an input vari-
able named directory and assigned to a variable named
files. This nicely captured the different abstractions that
different programmers used to represent code, which is
important because functions have only one name. The
problem with this approach is that many things aren’t
usually implemented as functions. Higher level concepts
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Figure 1: Macho workflow

like ignore, first, or adjacent usually appear as operations
or even control flow. Often they have no input variables
or are only tagged in the comments.

2.3 Stitching
Macho’s stitching subsystem combines results from
database queries into candidate programs. Its main guide
is the type system; two expressions can be linked by a
variable if the output type of one matches the input type
of the other. If the types don’t match, the stitcher will
query the database for common chunks of code that were
used to convert between those types.

Macho also generates a small amount of control flow.
If statements are generated only from hints by the natu-
ral language parser and the synthesizer. Map loops are
generated when suggested by the type system. Macho
tries to limit control flow generation because it swiftly
increases the solution space; an upstream chunk may be
placed in any block above the downstream chunk.

The most difficult part of stitching is keeping track of
the data flow between expressions in the presence of con-
trol flow. The natural language gives a great deal of infor-
mation for how information is supposed to flow from one
chunk to another; previous natural language program-
ming systems generated code without any search at all.

2.4 Automated debugger
Macho’s automated debugging subsystem attempts to de-
bug candidate programs. This type of automated debug-
ging is potentially extremely difficult, but many of the
automatically generated candidate programs will have
utterly obvious errors that can be fixed easily. The pri-
mary difference between stitching and automated debug-
ging is that debugging is dynamic rather than static and
has access to the behavior of the program. Currently
the automated debugger runs the candidate in a sandbox

and performs a diff between the output of the candidate
and the unit test and classifies the candidate into one of
five simple cases: exception thrown (try to insert an if
block around the offending statement), a superset of cor-
rect output (insert if blocks around the offending print),
garbage (try the next program), a subset of correct out-
put (try adding a few prints), or, in the best case, correct
output (declare victory).

These components have synergy beyond simply cor-
recting mistakes. For example, our automated debug-
ger leverages the database to suggest changes to buggy
programs. When it is faced with a potential solution
for ls which incorrectly prints hidden files, the debug-
ger queries the database for commonly used functions
of java.io.File which could be used in an if statement to
restrict the obstreperous print. This simple probabilistic
model allows it to try the isHidden method even though
it is not used elsewhere in the candidate solution.

Although the automated debugging seems superfi-
cially simple, it actually solves a very difficult problem
of library combination. Macho’s database finds candi-
date functions entirely by name, which may be unrelated
to their purpose. Running the code allows the debugger
to eliminate these imposter functions.

3 Evaluation

Objectively evaluating Macho is very difficult. There is
no standard test suite where we can benchmark our re-
sults against other systems, and using the language from
the man pages directly is almost impossible. Consider
the byzantine man page description for wget:

GNU Wget is a free utility for non-interactive
download of files from the Web. It supports
HTTP, HTTPS, and FTP protocols, as well as
retrieval through HTTP proxies.
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Program Result Input Notes
pwd success Print the current working directory. Difficult as there is no input.
pwd success Print the user directory. CWD = “user.dir” in Java.
pwd success Print the current directory. Abbreviation!
pwd fail Print the working directory. Breaks NLP for arcane reasons.
pwd fail Show the current working directory. Database entries for show are mostly graphics.
cat success Print the lines of a file. Vanilla.
cat success Read a file. Print is synthesized.
cat fail Display the contents of a file. Database entries for contents are mostly graphics.
cat fail Print a file Solutions print the file name.
sort success Sort the lines of a file. Print is synthesized.
sort success Sort a file by line.
sort fail Sort a file. Insufficiently precise specification.
sort fail Sort the contents of a file Database entries for contents are mostly graphics.
grep success Print the lines in a file matching a pattern. Solutions using both JavaLib and GNU regexes.
grep fail Find a pattern in the lines of a file. Correct except for if statement linking test and print.
grep fail Search file for a pattern. Poor resiliency for function names.
ls success Print the names of files in a directory. Sort the names.
ls success Print the contents of a folder. Sort the names.
ls fail Print the names of the entries in a directory. Entries to names fails.
ls fail Print the files in a directory. Does not synthesize sort.
cp success Copy src file to dest file. Programmer abbreviation!
cp success Copy file to file. Ugly but Macho needs to know there are two inputs.
cp fail Duplicate file to file. No candidate in database.
wget fail Download file. Candidates have extra functionality.
wget fail Open network connection. Download file. Macho can’t create buffer transfer loop.
head fail Print the first ten lines of a file. ’First’ is incomprehensible.
uniq fail Print a file. Ignore adjacent lines. ’Ignore’ and ’adjacent’ don’t map to libraries.
perl fail The answer to life, the universe, and everything. Seems to work, but it’s still running.

Figure 2: Macho’s results for generating select core utils. This figure shows the results for pwd, cat, sort, grep, ls, cp,
wget, head, and uniq, and the natural language input we used for each of these programs.

Giving out partial credit is also difficult. Some of
Macho’s solutions are very close but not byte identical,
but automatically determining whether or not an output
is sufficiently close to the test case is approximately as
hard as generating the program, an artificial version of
the Dunning-Kruger effect. Under these circumstances
we decided to try to pick an interesting set of natural
language inputs right on the border of Macho’s capabili-
ties and use our best judgement when the test cases were
“close”.

Macho succeeded in generating simple versions of six
out of nine coreutils - pwd, cat, sort, grep, cp, and ls -
and failed to synthesize wget, head, and uniq. For each
core utility, we targeted its default behavior: no options
and the minimum number of arguments possible. Since
we had the programs available anyway, we used them to
generate our unit tests. All of the programs had only one
short test and the results are shown in Figure 2.

4 Lessons Learned

4.1 The Database is King
Although most of the programs Macho writes are 10-15
lines or less, there are a lot of potential 10-line Java pro-
grams. Brute force really does not get very far - the abil-

ity of the database to select reasonable pieces from the
natural language heuristics is absolutely critical. In gen-
eral, when the stitching failed, it was often reasonable to
think of a hack, or a simple fix, or just let it run a little
longer, but when the database failed Macho had no hope
of ever generating a correct solution. Improving Macho
will require a superior database above everything else.

4.2 Pure NLP is Bad

Programming with natural language is generally consid-
ered a bad idea because specifying details gradually mu-
tates the natural language into a wordy version of Visual
Basic. Consider a natural language spec for ls:

Take the path "/home/zerocool/"
If the path is a file, print
it. Otherwise get the list of
files in the directory. Sort the
result alphabetically. Go over
the result from the beginning to
the end: If the current element’s
filename does not begin with ".",
print it.

which is our best guess for the input required for Pe-
gasus [3]; it is obvious why most programmers would
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prefer to use Python instead. Instead, a Macho program-
mer can specify the basic task very simply:

Print the names of files in a
directory. Sort the names.

Even an almost trivial program like this leaves many
details unspecified: should the sort be alphabetically by
filename, size, file extension, or date? Should the pro-
gram print the full path, the relative path, or just the name
of the files? Does “files” include subdirectories or hid-
den files? All of these questions are easily cleared up by
an example of correct operation. Such examples not only
have a higher information density than tedious pages of
pseudocode or UML, but they also reduce the workload
of the programmer by allowing him to think about one
case at a time, rather than all possible cases. In other
words, examples allow a user to be concrete without be-
ing formal.

4.3 Interactive Programming is the An-
swer

A traditional programmer must write code that satisfies
all possible inputs his program will encounter, while a
Macho Programmer can consider each input individually.
Macho therefore not only saves the programmer the work
of writing code but also frees the programmer from dif-
ficult formal reasoning.

Ideally, however, the programmer would only be re-
quired to verify, not generate, concrete values. In this
rosy scenario the programmer would input natural lan-
guage and the system would offer a set of alternatives.
The programmer could then reject incorrect cases, or
suggest modifications, until eventually a correct program
is negotiated. This is important because programming is
not simply the act of transferring a mental vision into ma-
chine code. In reality, the requirements are fuzzy. Some
things are more important than others, and still others can
be waived or changed if they are difficult to implement.
Interactive programming allows the programmer to take
the path of least resistance to a satisfactory program.

Of course, this also requires considerably more accu-
rate program synthesis from pure natural language, as
well as much better understanding of general concepts,
which no one really knows how to do at the moment.

5 Conclusions

In this paper we have discussed Macho, a system that
synthesizes programs from a combination of natural lan-
guage, unit tests, and a large database of source code
samples. A few of our technical findings are that the nat-
ural language can give implicit hints about the control

flow in a program, variable names contain useful infor-
mation about the functionality of code, and the automatic
debugger can use the database to add new code to a can-
didate solution.

Macho is a simple proof of concept system, not yet di-
rectly useful for most programmers, but it can still syn-
thesize basic versions of six small coreutils. By improv-
ing the source code database we believe that Macho can
be a practical system for helping programmers.
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