
The Case for Power-Agile Computing

Geoffrey Challen
MIT, SUNY Buffalo∗

Mark Hempstead
Drexel University

1 Introduction

Battery-powered devices are trapped by trends. More
powerful performance requires more power, and while
battery technologies slowly improve [17] users want
more capable devices with longer battery lifetimes [19].
A way to escape this trap leverages power-proportional
hardware architectures [5] that scale power consump-
tion to perform when needed and draw little power when
idle. Because most components are tuned to operate
efficiently within a narrow power-performance range,
we expect future power-proportional architectures to be
heterogeneous, featuring multiple different processors,
memory chips, storage devices and radios, each with
different power-performance tradeoffs. Heterogeneity
produces devices with fluid characteristics: phones that
sprint like desktops and sleep like sensor nodes.

Today’s devices already incorporate multiple proces-
sors, storage devices and radios with different power-
performance characteristics. Researchers have proposed
operating system designs that acknowledge this hetero-
geneity [6], performance- or power-driven component
combinations [11, 4], approaches harnessing the effi-
ciency of a particular set of components for certain
tasks [1, 16], and systems organized into multiple power-
performance tiers [15]. Inspired by these efforts, we coin
the term power agility to describe a system’s ability to ef-
ficiently operate a heterogeneous power-proportional de-
vice, balancing performance and power consumption.

Given increasingly heterogeneous devices, power
agility requires not merely adjusting individual compo-
nents but activating and deactivating them to react to
changing demand. The idle phone in my pocket con-
sumes less power than the one using GPS to route me to
my destination, and while the mapping application wants
the high-power radio, the game prefers a faster proces-
sor. So while power-proportional hardware allows the
device to sprint and sleep, power-agile software guides it

∗Starting 7/1/2011.

correctly between states. Recent microarchitectural ad-
vances attempt to mask hardware heterogeneity from the
operating system [14], but we consider these a mistake.
Only the operating system has the system-wide visibility
and application information to achieve power agility.

This paper outlines the principles of power-agile com-
puting. To begin, we design a heterogeneous power-
proportional device to illustrate the size and diversity of
the state space inherent to these architectures. Next, we
present a scenario demonstrating our device responding
to changes in demand. Using this scenario, we develop
a set of challenges inherent to power-agile operation and
discuss approaches to overcoming them.

2 Example Architecture

To begin, we assemble a device combining two general-
purpose processors1 (P1 and P2), two memory chips (M1
and M2), two storage devices (S1 and S2) and two radios
(R1 and R2). Table 1 describes each component.

The relationship between power and performance
varies for each component. Processors may transition
smoothly over a restricted power envelope using dy-
namic voltage and frequency scaling (DVFS), but can-
not scale to zero without losing state. Memory (DRAM)
has a constant refresh cost that scales roughly with ca-
pacity plus additional power draw corresponding to the
rate of reads and writes. Storage devices differ based on
whether or not they include spinning components. Flash
drives do not and scale approximately with usage but are
limited in size. Radios exhibit wide power-performance
variation because their usage depends both on the hard-
ware and the protocol. 802.11 clients can enter power-
saving mode (PSM) which uses base station buffering to
save power. Bluetooth has limited range but lower power
consumption balanced between both sides of the link.

1Distinguished from task-specific processors like GPUs or DSPs.

1



ID Name mW Performance

P1 ARM Cortex-M41 [3]
0.92 75 MHz

15.6 300 MHz

P2 ARM Cortex-A9 [2] 23.52 415 MHz
400. 830 MHz

M1 32 MB ISSI SDRAM [9] 81. Refresh only
108. 166 MHz

M2 1 GB Micron “Slow” DDR2 322.4 Refresh only
482. 266 MHz

S1 2 GB MicroSD Card 20.5 Idle
100.5 25 MBps6

S2 64 GB OCZ SSD 200.7 Idle
1000.7 5.5 MBps7

R1 250 kbps TI CC2540 BLE 6.73 10% duty cycle8

66.39 Receive mode9

R2 11 Mbps Marvell 802.11bg 30.93 10% duty cycle8

309.310 Idle mode10

1 Capable of running a subset of the full P2 instruction set.
2 Optimistic estimate based on an optimistic estimate of DVFS

providing 1:5 performance and 1:17 power scaling [7].
3 Estimated based on scaled full-power performance.
4 Estimated based on Micron leakage numbers.
5 Estimated due to lack of publicly-available datasheets.
6 Maximum achievable.
7 Measured by Tom’s Hardware [18].
8 Duty cycling shifts power usage from the receiver to the sender,

which has to remain online (as in 802.11 PSM) or send longer
packets (as in 802.15.4 Low-Power Listening [12]).

9 Receive-only in high-sensitivity mode. Transmit is similar.
10 Transmit and receive vary so usage is workload-dependent.

Table 1: Performance and power consumption of se-
lected hardware components. We assume voltage gat-
ing can reduce the usage of disabled components to near
zero [13]. The 10 notes reflect the challenge in obtaining
these numbers, as most data sheets omit this information.

We define a component ensemble as the components
currently active, constraining the set of valid ensembles
to include only those that can support the device oper-
ating system. For our example, these include (a) one or
both processors, (b) one or both memory chips2, (c) nei-
ther, one or both storage devices and (d) neither, one or
both radios. By switching between components our de-
vice can operate across a wide power range. It its lowest-
power ensemble, the device has a 75 MHz CPU, 32 MB
of RAM, and draws 823 mW and is roughly-equivalent to
a embedded sensor node. In its highest-power ensemble
the device has multiple cores, over 1 GB of RAM, over
320 GB of storage, Wi-Fi and Bluetooth. Consuming al-
most 2.5 W, it is similar to emerging smartphones.

2While many low-power processors come with small amounts of
integrated memory, we have conservatively chosen to require 32 MB
of RAM in order to run embedded versions of Linux. It is conceivable
that our candidate device could enter an active sleep state with a micro-
kernel capable of fitting in the processor’s onboard RAM.

3Actual power consumption would be higher due to system buses,
memory controllers, and other components of a complete architecture.

This device can activate 144 valid component ensem-
bles4. Figure 1 shows the composition and power en-
velope of each, and motivates two observations. First,
there are many valid ensembles and wide usage variation
even in an architecture with only two components per
class. Incorporating more components would produce
even more options. Second, at any power level there are
many diverse ensembles the device can use: a fast pro-
cessor, small memory chip, and slow disk; a slow proces-
sor, large memory chip, and fast radio; etc. These differ
not in their total power consumption but in how they per-
form and distribute power across components, and while
some ensembles may seem too weird to be useful they
may suit certain applications. Finally, while it may seem
best to avoid inefficient ensembles—those achieving low
utilization and a low active- to idle-power ratio—given
the speed of temporal changes in demand and the over-
head of ensemble transitions we expect devices to spend
some time at the low end of ensemble power envelopes.

3 Challenges

To illustrate how a power-agile device might operate we
imagine a phone performing a background task that is in-
terrupted by an interactive session. Figure 2 shows how
overall and per-component power allocations change to
respond to the needs of the two applications. We refer
to this scenario throughout the rest of this section as we
examine the challenges inherent to power-agile comput-
ing. These are related to five roles that the operating sys-
tem plays while operating power-agile hardware: mea-
suring (3.1) and predicting (3.2) performance; and select-
ing (3.3), preparing (3.4) and executing (3.5) ensemble
transitions. Throughout we demonstrate how traditional
scheduling and resource-allocation problems are compli-
cated by the flexible nature of the underlying hardware.

3.1 Measuring Efficiency
Determining performance differences between ensem-
bles requires application metrics weighting both power
and performance such as the energy-delay product
(EDP), commonly used in circuit design [10]. The EDP
is defined as EDP = E∆ where E measures the en-
ergy consumed during some time quantum and ∆ mea-
sures a application-specific performance characteristic
such as the time necessary to process a block of data
or respond to user input. The system tries to minimize
the EDP for each application. Controlling the strength
of the performance component using an exponential—
EDP = E∆n—allows applications to weight their pref-
erence for performance or efficiency. In our scenario,

43 processor choices × 3 memory choices × 4 storage choices × 4
radio choices.

2



21
89
121
99
83
65
49
27
14

To
ta

lP
os

si
bl

e
E

ns
em

bl
es

0.5

1.0

1.5

2.0

2.5
Po

w
er

(W
)

Efficient Ensemble Power Range

Total Ensemble Power Range

Component Ensemble
R2
R1
S2
S1

M2
M1
P2
P1

C
om

po
ne

nt

Figure 1: Power envelopes of all 144 example device component ensembles. Ensembles are sorted by increasing maximum
power draw. For each ensemble, the bottom shows which components are active and the top displays the power envelope. The
top 20% of the envelope—the most efficient operating range—is drawn in dark blue. The right axis counts the total number of
ensembles that might draw that much power: e.g., there are 121 ensembles that could consume 0.75 W, depending on the workload.

the interactive application uses E∆2 causing the system
to activate high-performance ensembles; the background
task uses E

√
∆, causing the system to remain in lower-

power states. Ensuring that applications choose appro-
priate exponents and balancing between applications at
run-time are challenges inherent to this approach.

3.2 Predicting Ensemble Performance

Given the size of the ensemble state space, predicting en-
semble performance is a key part of transitions. Assum-
ing an application with preferred EDP E∆n, both E and
∆ will vary across ensembles: E with the cost and uti-
lization of system components, and ∆ with performance.
The direct way to determine power-performance is to run
the application on many ensembles, but given the num-
ber of states and transition cost this is infeasible online.
However, offline experimentation could produce binary
annotations. Another approach is to have executables in-
clude hints about performance characteristics important
to various stages. Before transmitting a large amount of
information, a hint would alert the system to the need for
a high-bandwidth radio. Hints have the advantage be-
ing portable across devices, but they require programmer
support and the system must ensure that applications do
not abuse them to gain unfair access to resources.

When running unannotated binaries or mixtures of ap-
plications with performance dependencies, the system
may need to estimate the impact of ensemble changes
before performing them. In some cases, the currently
running ensemble can be artificially constrained to esti-
mate how performance might change after a component
change. For example, when moving from M2 to M1 at t

= 7 in the scenario, the system might be concerned about
the impact of this transition on the usage of S1. If dis-
abling the large memory chip causes S1 usage to increase
dramatically, the system will fail to achieve the intended
power reduction. To uncover a link between memory size
and disk usage, the operating system can artificially limit
the amount of memory in use by trimming pages from
M2. It may do this in a smooth fashion until it is using
only roughly the same amount of the larger chip as the
smaller chip size, and then, assuming no serious compo-
nent relationships have been uncovered, initiate the tran-
sition. This strategy is more applicable to transitions that
attempt to trim power by disabling components, but this
is also when it is most useful, as it allows the operating
system to discover relationships between component us-
age that might negate power reductions.

3.3 Selecting Component Ensembles

Scheduling ensemble transitions relies on the capabilities
already presented—metrics for evaluating performance
and predicting performance across ensembles. When
running a single application the system can respond di-
rectly to its estimated performance, weighting efficiency
improvements against ensemble transition costs.

Running multiple applications creates new challenges.
First, there is the question of how to assign performance
metrics to applications. In our scenario the background
task would complete faster if it were allowed to use the
higher exponent used by the interactive application. The
goal is to assign the most efficient metric to the applica-
tion that produces acceptable performance, and doing so
is likely to require user feedback.

3



1 2 3 4 5 6 7 8
Time

0.25

0.50

0.75

1.00

1.25

1.50
Po

w
er

(W
)

P1 (1%)

M1 (92%)

R1 (7%)

P1 (3%)

M1 (22%)
S1 (20%)

R2 (55%)

P2 (58%)

M1 (22%)
S1 (20%)

P2 (7%)

M2 (32%)

S1 (7%)

S2 (54%)

P2 (27%)

M2 (32%)

S1 (7%)

S2 (34%)

P2 (41%)

M2 (49%)

S1 (10%)

P1 (2%)

M2 (53%)

S1 (11%)

R2 (34%)

P1 (3%)

M1 (22%)
S1 (20%)

R2 (55%)

P1 (1%)

M1 (92%)

R1 (7%)

Processor
Radio
Storage
Memory

Idle Background Interactive Background Idle

0 When idle P1 and M1 are idled and R1 operates at
low duty cycle.

1 Receiving data over R1 the phone initiates a back-
ground task. The device activates R2 to rapidly re-
ceive data and S1 to store it.

2 As the phone begins processing the task it activates
P2 and disables R2.

3 The user removes the phone from their pocket and
begins interacting with an application, which acti-
vates M2 and retrieves data from S2.

4 As the interactive application continues energy us-
age shifts from S2 to P2.

5 When the interactive application is finished with S2
it is disabled.

6 As the interactive session completes, the phone of-
floads data using R2 driven by P1.

7 Background processing resumes in the same ensem-
ble it was using previously.

8 The background task completes, idling the phone.

Figure 2: Scenario. The figure and table describe the scenario referred to throughout Section 3. Bars indicate the total
energy consumed, broken down and labeled by component. The table describes what is happening at each time step.

Choosing the correct ensemble for both applications
is the next challenge. If their performance requirements
are aligned, then an ensemble may exist that works well
for both. Applications differing in their performance re-
quirements complicate the process. If the system has suf-
ficient energy it may choose to operate a combination of
both ideal ensembles, but this produces inefficiency as
the set of distinct resources needed by one application is
idled while the other runs.

The simplest approach is to transition between the
ideal ensembles while increasing both application’s time
quanta sufficient to amortize the transition cost. In many
cases, however, we expect that this will lead to unac-
ceptable interactive performance. A second possible ap-
proach is to pick an ensemble that produces acceptable—
but not ideal—performance for both applications, poten-
tially weighted towards the application with higher pri-
ority. Another option is to select an ensemble optimized
for one application while allocating resources within that
ensemble in favor of the other. For example, given one
application that requires a high-speed disk and another
than needs a large memory chip, we can choose to use
the large memory chip and a slower disk allocating a
large portion of the memory to a buffer cache to improve
performance for the I/O-bound application.

3.4 Preparing Ensemble Transitions

Because ensemble transitions are both important and
costly, the operating system should prepare the system to
minimize their overhead. Preparation is particularly im-
portant in the memory and storage hierarchy, where the
location of data has a significant impact on component
transitions. Preparation also requires the system forecast
future application demand and ensemble dwell times.

Consider an example transition that activates a larger
memory chip with superior performance. If the system
will be in that ensemble for a significant length of time,
all applications will benefit from having data relocated
from the smaller to the larger chip. This also allows the
smaller chip to be shut off to save power. However, if
and when the device wants to disable the larger memory
chip in order to shift power toward some other necessary
component, the amount of data stored in the larger mem-
ory bank creates a high overhead for this transition.

If the system predicts brief use of the larger memory
bank, it may try several strategies to reduce the eventual
transition overhead. First, if the transition is due to a par-
ticular application, it may continue to operate the smaller
chip for other applications while allocating new pages
on the larger component. Once the memory-hungry ap-

4



plication is finished with these pages, they can be dis-
carded and the memory disabled without migrating data.
Another approach is to copy accessed pages on demand
but mirror writes to both memory banks to minimize the
eventual transition cost. Assuming that the smaller chip
is never shut off—possible if consumes little power—the
physical address space may be configured to always mir-
ror a portion to both chips when the larger bank is active.
The operating system may try to allocate memory from
the mirrored portion of the address space for pages that
have long expected lifetimes, are used by applications
that prefer more power-efficient states, or based on ex-
plicit application requests. These pages will benefit from
better performance when the larger bank is active while
never requiring migration.

3.5 Executing Ensemble Transitions
Ensemble transitions tailor the device to application
demands but may require complex or expensive com-
ponent transitions. The Advanced Configuration and
Power Interface (ACPI) specification [8] standardizes
per-component and overall power states but does not
consider component transitions. Below we outline for
each component class, the complexity and cost of transi-
tions and a brief description of how to perform one:

• Processor: Difficulty: high, Cost: medium. Transi-
tioning between processors, even ones with highly-
compatible instruction sets, requires migrating pro-
cess state, correcting for processor differences, and
potentially reloading new process executables en-
abling or disabling certain instructions.

• Memory: Difficulty: medium, Cost: high. Mov-
ing to a smaller chip requires migrating some pages
to the new memory area while flushing others to
the backing store, along with kernel adjustments to
its own memory footprint. Transitioning to a larger
chip requires migrating data.

• Storage: Difficulty: low, Cost: low. Disabling re-
quires writing out dirty buffers. Enabling will cause
a performance dip while caches fill.

• Radio: Difficulty: medium, Cost: medium. Dis-
abling requires flushing any outstanding buffers,
closing connections and potentially coordinating
with the receiver to move together to a new radio
technology. Enabling may require association—
potentially costly, depending on the protocol—and
a delay while link parameters necessary for efficient
operation can be determined.

4 Summary

Power-proportional heterogeneous devices require sys-
tem support to continuously balance performance and
power efficiency, an ability we call power agility. On to-
day’s ubiquitous battery-powered devices power agility
is critical in order to continue improving performance
while delivering acceptable battery lifetime.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant # CCF-1017654.

References
[1] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHAN-

ISHAYEE, A., TAN, L., AND VASUDEVAN, V. Fawn: A fast
array of wimpy nodes. In SOSP’09.

[2] ARM. Cortex-A9 Processor. http://bit.ly/bHOomu.
[3] ARM. Cortex-M4 Processor. http://bit.ly/hs7dQ7.
[4] BALASUBRAMANIAN, A., MAHAJAN, R., AND VENKATARA-

MANI, A. Augmenting mobile 3G using WiFi. In MobiSys’10.
[5] BARROSO, L. A., AND HÖLZLE, U. The case for energy-

proportional computing. Computer 40 (December 2007), 33–37.
[6] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T.,

ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new os architecture for scal-
able multicore systems. In SOSP’09.

[7] ET AL., K. J. N. A 32-bit PowerPC system-on-a-chip with sup-
port for dynamic voltage scaling and dynamic frequency scaling.
IEEE Journal of Solid-State Circuits 37, 11 (Nov 2002), 1441–
1447.

[8] HEWLETT-PACKARD, INTEL, MICROSOFT, PHOENIX TECH-
NOLOGIES, AND TOSHIBA. Advanced configuration and power
interface. http://www.acpi.info/.

[9] ISSI. Is42vm32100c advanced information. http://bit.
ly/eDqr3O.

[10] MARTIN, A. J., NYSTRÖM, M., AND PÉNZES, P. I. ET2: A
metric for time and energy efficiency of computation. Tech. rep.,
2001.

[11] MOGUL, J. C., ARGOLLO, E., SHAH, M., AND FARABOSCHI,
P. Operating system support for NVM+DRAM hybrid main
memory. In HotOS XII.

[12] MOSS, D., HUI, J., LEVIS, P., AND CHOI, J. I. Tinyos exten-
sion proposal TEP-126. http://bit.ly/gCEEZ5.

[13] POWELL, M., YANG, S.-H., FALSAFI, B., ROY, K., AND VI-
JAYKUMAR, T. Gated-vdd: A circuit technique to reduce leakage
in deep-submicron cache memories. In ISLPED 2000.

[14] RANGAN, K., POWELL, M., WEI, G.-Y., , AND BROOKS, D.
Achieving uniform performance and maximizing throughput in
the presence of heterogeneity. In HPCA-17.

[15] SORBER, J., BANERJEE, N., CORNER, M. D., AND ROLLINS,
S. Turducken: Hierarchical power management for mobile de-
vices. In MobiSys’05.

[16] SZALAY, A. S., BELL, G. C., HUANG, H. H., TERZIS, A.,
AND WHITE, A. Low-power amdahl-balanced blades for data
intensive computing. In HotPower’09.

[17] THE ECONOMIST. In search of the perfect battery. http://
econ.st/h9jzzk.

[18] TOM’S HARDWARE. Flash ssd update: More results, answers.
http://bit.ly/ylLgD.

[19] WALKO, J. What do cell phone users want? Better batteries!
http://bit.ly/gefaF1.

5

http://bit.ly/bHOomu
http://bit.ly/hs7dQ7
http://www.acpi.info/
http://bit.ly/eDqr3O
http://bit.ly/eDqr3O
http://bit.ly/gCEEZ5
http://econ.st/h9jzzk
http://econ.st/h9jzzk
http://bit.ly/ylLgD
http://bit.ly/gefaF1

	Introduction
	Example Architecture
	Challenges
	Measuring Efficiency
	Predicting Ensemble Performance
	Selecting Component Ensembles
	Preparing Ensemble Transitions
	Executing Ensemble Transitions

	Summary

