
Exploiting MISD Performance Opportunities in Multi-core Systems

Patrick G. Bridges, Donour Sizemore, and Scott Levy∗

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Abstract

A number of important system services, particu-
larly network system services, need strong scaling on
multi-core systems, where a fixed workload is exe-
cuted more quickly with increased core counts. Un-
fortunately, modern multiple-instruction/multiple-
data (MIMD) approaches to multi-core OS design
cannot exploit the fine-grained parallelism needed
to provide such scaling. In this paper, we pro-
pose a replicated work approach to parallelizing net-
work system services for multi-core systems based on
a multiple-instruction/single-data (MISD) execution
model. In particular, we discuss the advantages of
this approach for scalable network system services
and we compare past methods for addressing the chal-
lenges this approach presents. We also present pre-
liminary results that examine the viability of the ba-
sic approach and the software abstractions needed to
support it.

1 Introduction

A number of important system services need strong
scaling, where a fixed workload is executed more
quickly with increased core counts. This is partic-
ularly true for data-intensive, network-oriented sys-
tem services because network interface card (NIC)
line rates continue to increase but the individual cores
that service them are not getting any faster. In cases
like this, multiple cores must closely coordinate ac-
tivities and multi-core system designs which rely on
only intermittent synchronization will bottleneck on
inter-core synchronization. As a consequence, the re-
sulting system performance can be disappointing.

∗This work was supported in part by gifts from Sun and
Intel Corporations, a faculty sabbatical appointment at Sandia
National Laboratories, and a grant from DOE Office of Science,
Advanced Scientific Computing research, under award number
DE-SC0005050, program manager Sonia Sachs.

Recent research projects on multi-core system soft-
ware designs propose a distributed systems-oriented
approach, where data structures are replicated or seg-
regated between processors [1, 2]. These designs use
a multiple-instruction/multiple-data (MIMD) paral-
lel execution model, and generally focus on services
for which coarse-grained synchronization is sufficient.
Because of this, such systems generally provide only
weak scaling, where more cores can be used to handle
a larger workload (e.g. more TCP/IP connections)
but cannot make an existing workload (e.g. a single
TCP/IP connection) run faster.

In this paper, we propose a replicated work ap-
proach based on a multiple-instruction/single-data
(MISD) execution model to take advantage of un-
exploited parallelization opportunities in multi-core
systems. This approach is particularly important in
the network stack, as it is needed to enable strongly
scalable network services. We begin by discussing
example network applications and related system
services that require strong scaling. We then dis-
cuss a replicated work execution model for building
strongly-scalable network system services based on
MISD parallelism, along with specific challenges that
this execution mode presents, including consistency,
scheduling, and programmability. Finally, we dis-
cuss initial experiments we have conducted on this
approach and the infrastructure to support it.

2 Motivating Applications and
Services

The combination of increasing network card line rates
and plateauing single-core CPU speeds is driving the
demand for scalable network services. The most ob-
vious motivating example of this is high-speed net-
work connectivity over TCP-based network connec-
tions. Traditional operating systems have difficulty
saturating a 10Gbps Ethernet NIC using a single

1

TCP connection [14] without complex hardware as-
sistance such as TCP offload engines. However, such
hardware solutions present well-known challenges to
system software design (e.g. packet filtering, security,
portability).

Past work has shown that providing scalable net-
work connections in software is quite challenging [11,
14]. Perhaps as a result, recent work on scaling
TCP/IP network stacks has focused primarily on
scaling the number of connections or flows that can
be supported rather than on the data rate of indi-
vidual connections. Corey, for example, uses a pri-
vate TCP network stack on each core [3], and Route-
Bricks segregates each IP flow to its own core [6].
These approaches allow systems to scale to handle a
large number of connections or flows, but limit the
data rate achievable on each flow to well below the
throughput of modern network cards.

One frequently attempted workaround to these
problems is to use multiple parallel connections for
these applications, turning a strong scaling problem
into a weak scaling one. Unfortunately, this approach
has numerous drawbacks. Most importantly, such ap-
proaches can break existing network resource alloca-
tion systems [13]. It also places significant burden on
application and library programmers for managing
data ordering and reliability.

Without a scalable network service, a wide range
of applications such as high-bandwidth file systems,
databases, and content distribution systems, become
difficult to deploy. For example, the performance
of middleware systems that buffer, aggregate, and
analyze data as it is streamed between data ware-
house systems (e.g. Netezza, LexisNexis) and high-
end supercomputing systems (e.g. ADIOS [9]) de-
pends upon the availability of scalable network ser-
vices.

3 Building Strongly Scalable
System Services

The primary challenge in building strongly scalable
networked system services is handling shared state.
Current MIMD-based approaches to parallelizing sys-
tem services for multi-core systems rely on relatively
expensive synchronization mechanisms (e.g. mes-
sages, locks) that prevent the exploitation of fine-
grained parallelism. TCP/IP, for example, includes
important shared state (e.g. sliding window state)
that must be updated on each packet sent or received.

TCP also includes elements that can potentially be
paralellized, for example data delivery, acknowledg-
ment generation, and timer management. Unfortu-
nately, explicit or implicit inter-core communication
costs are too large compared to packet processing
times to be successfully amortized away.

3.1 MISD-Based Parallelism

We propose using a multiple instruction/single data
(MISD) execution model (i.e. replicated work) to
provide fine-grained data consistency between cores
and to eliminate expensive inter-core interactions. In
this approach, shown in Figure 1(a), state is repli-
cated into domains on separate cores, and requests
that modify shared state are broadcast to every do-
main using a ringbuffer-based channel abstraction.
The first replica that dequeues a request becomes
the primary replica for that request and is responsi-
ble for fully processing it, including any updates with
globally visible side effects (e.g. data delivery, packet
reconstruction, acknowledgment generation). Other
replicas that process the request will, on the other
hand, only partially process each request to maintain
state consistency.

This approach is particularly appropriate for many
network services because it parallelizes expensive per-
byte processing (e.g. data copies, encryption/decryp-
tion, and error correction) and replicates per-header
processing costs that are known to be small [7]. It
also retains the reduced locking and caching costs of
systems like Barrelfish [1] while adding the ability
to perform fine-grained updates to logically shared
state. Finally, we note that this approach is simi-
lar to the execution model used in many group RPC
systems [5]

To examine the potential for this approach com-
pared to lock-based and atomic instruction-based
MIMD approaches, we constructed a simple synthetic
test. In this test, processing each request requires
some amount of work that can be done by one core
without synchronization or replication (i.e. paralleliz-
able work), and some work that must be synchronized
or replicated. Specifically, the parallelizable work is
a set of memory updates done on per-core memory,
while the synchronized work is the set of memory up-
dates that must be performed: (a) on every replica;
(b) while holding a shared lock; or (c) by using atomic
memory update instructions.

Figure 1(b) shows the potential performance ad-
vantages of this approach using a 10:1 ratio of paral-
lelizable to replicated work; we chose this ratio based

2

CPU 1

Domain
1

Subsc
1

CPU 4

Domain
4

Subsc
4

Incoming
Channel

Outgoing
Channel

Incoming
Requests

Outgoing
Messages

Consistency
Manager

CPU 2

Domain
2

Subsc
2

CPU 3

Domain
3

Subsc
3

(a) Replicated-work parallelization archi-
tecture

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 1 2 3 4 5 6 7 8 9

R
eq

ue
st

s
pe

r S
ec

on
d

Number of Threads

Replication
Fined-grained Locking

Coarse-grained Locking

(b) Comparison of lock, atomic instruction, and replicated-work par-
alellization approaches

Figure 1: Architecture and basic performance of a replicated-work parallelization approach

on our our studies of production TCP/IP stacks. As
can be seen, the lock-based model scales remarkably
poorly and the atomic instruction approach is only
slightly better. The replicated work approach, in con-
trast, scales well to 8 cores, the limit of the 2x4-core
Intel Xeon machine on which we tested.

3.2 Consistency Management

While this approach avoids the inter-core synchro-
nization and communication costs of other ap-
proaches, it does introduce consistency management
problems. Specifically, domains that subscribe to
multiple broadcast channels, for example separate
channels for incoming and outgoing packets are by
default PRAM consistent—they see requests on the
same channel in the same order, but may see differ-
ent interleavings of the requests from the different
channels.

If these consistency problems are not handled prop-
erly, inconsistency between replicas could result in
both poor performance and incorrect behavior. In
the networking context, for example, a replica could
dequeue an incoming acknowledgement for a packet
sent by another replica before it sees dequeues the re-
quest that generated the packet being acknowledged
from the outgoing request channel.

There are a variety of approaches to handling these
consistency management problems. The simplest so-

lution is for each domain to route all requests through
a single broadcast channel that supports multiple
producers, resulting in sequential consistency be-
tween replicas—all replicas see the same requests in
the same order—at the cost of extra synchronization
when enqueuing requests on channels. A wide range
of other well-known distributed consistency and mes-
sage ordering techniques are also potentially applica-
ble.

In addition, addressing consistency problems is in
many ways simpler for network services than for
other services. In particular, inconsistency between
replicas in network services results in anomalous pro-
tocol behavior, and many network services must be
able to tolerate unexpected protocol behaviors due
to unusual network conditions. As a result, consis-
tency management between replicas for these services
need only focus on inconsistency that results in non-
recoverable behavior (e.g. spurious connection resets)
or that significantly impacts performance and scala-
bility.

We are taking an approach where each service man-
ages its own consistency demands in three distinct
ways. Most coarsely, each service implementation will
determine how to use channels to route requests to
domains, allowing it to determine which requests are
sequentially consistent and which are PRAM consis-
tent. At a finer granularity, each domain implements
a channel scheduler which chooses from which chan-

3

nel to dequeue the next request, based on examina-
tion of the head of each channel; this allows it to
implement service-specific scheduling rules, such as:
“process outgoing requests required to fill the con-
gestion control window prior to processing incoming
packets”.

3.3 Scheduling

Using a bounded broadcast channel to provide MISD
parallelism, as we propose, also raises a variety of
inter-domain scheduling issues. In particular, do-
mains that lag behind in processing requests can
cause the channel to fill up, preventing new requests
from being enqueued and slowing service. However,
well-known gang scheduling and load balancing tech-
niques can be used to address such issues. In addi-
tion, because every replica processes the same set of
requests, it should be possible for a lagging replica
to roll forward to the state of another replica that
periodically saves a snapshot of its state in shared
memory.

3.4 Programmability

The new replicated work execution model described
above also presents programmability challenges, an
important factor to consider in new system software
designs. This execution model, like a purely dis-
tributed one, avoids the need for complex locking
protocols and read-copy-update mechanisms. It does,
however, require replicas to segregate program execu-
tion into work that must be executed on every request
(to maintain consistency) and work that must be ex-
ecuted when the replica is the primary on a request.

We believe that an event-based programming
model [12] is ideal for programming such services.
Event-based programming provides a simple mecha-
nism for directing execution based on whether or not
the replica is the primary for a request (e.g. by raising
separate events), and for reusing shared code between
primary and non-primary processing paths. In addi-
tion, MISD-style execution preserves the event atom-
icity expected in event-based systems, and event-
based systems have been successfully used in a num-
ber of related distributed systems projects [8].

4 Implementation

We have begun implementing our proposed approach
in a framework called Dominoes. As a first step, we

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 1 2 3 4 5 6 7 8

R
eq

ue
st

s/
se

c

Subscribing Cores

Per-Replica Throughput
Aggregate Request Throughput

Figure 2: Replicated ring buffer channel performance
on an 2x4-core 2.4GHz AMD Shanghai system

have implemented a replicated ring buffer channel to
broadcast requests to multiple domains. We have also
begun porting network stacks to this framework.

The basic replicated ring buffer channel is a tra-
ditional single producer/single consumer ring buffer
augmented with per-replica head pointers and a
global per-entry reference count updated using an
atomic decrement instruction. Upon dequeuing an
entry, a replica advances its local head pointer and
atomically decrements the entry’s reference count. If
the updated reference count is one less than the total
number of replicas, the replica knows that it is the
first to dequeue the request and is therefore respon-
sible for fully processing it. On the other hand, if
the updated reference count is zero the replica knows
that it is the last to dequeue and it can advance the
global head pointer, thereby freeing space in the ring
buffer for new entries. We have also implemented a
version that allows for multiple producers as opposed
to a single producer.

Figure 2 shows the per-core and aggregate dequeue
rates from a channel based on this data structure on a
2x4-core 2.4GHz AMD Shanghai system, where one
core is dedicated to enqueueing elements and some
number of the remaining cores dequeue elements.
Even with 1500 byte packets, this service rate is suffi-
cient at 4 replicas to handle data rates well in excess
of 10 Gbps. In addition, more sophisticated refer-
ence counting techniques than the one used by this
implementation (e.g. sloppy counters [3]), could also
potentially improve the scalability of this implemen-
tation.

In addition to this basic framework construction,

4

we have also begun porting the Scout [10] and the
CTP [4] networking frameworks to Dominoes. We
have completed initial ports of the (essentially state-
less) UDP and IP protocols, where preliminary scal-
ing results are encouraging, and are currently working
on a TCP protocol implementation. We have also be-
gun adapting the Cactus framework [8] used to imple-
ment CTP to provide an event-based programming
model in Dominoes, and porting basic components of
CTP to the resulting system.

References

[1] A. Baumann, P. Barham, P. E. Dagand, T. Har-
ris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach,
and A. Singhania. The multikernel: a new OS
architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, pages 29–
44. ACM, 2009.

[2] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
An Operating System for Many Cores. In
Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation,
2008.

[3] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An analysis of Linux scalability to
many cores. In Proceedings of the 2010 USENIX
Symposium on Operating System Design and Im-
plementation, 2010.

[4] P. G. Bridges, M. A. Hiltunen, R. D. Schlicht-
ing, G. T. Wong, and M. Barrick. A configurable
and extensible transport protocol. ACM/IEEE
Transactions on Networking, 15(6):1254–1265,
2007.

[5] S. T. Chanson, D. W. Neufeld, and L. Liang.
A bibliography on multicast and group com-
munications. ACM Operating Systems Review,
23(4):20–25, 1989.

[6] M. Dobrescu, N. Egi, K. Argyraki, B. gon Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy. RouteBricks: Exploiting par-
allelism to scale software routers. In Proceedings
of the 22nd ACM Symposium on Operating Sys-
tems Principles, 2009.

[7] A. Foong, T. Huff, H. Hum, J. Patwardhan, and
G. Regnier. TCP performance re-visited. In Pro-
ceedings of the 2003 IEEE International Sympo-
sium on Performance Analysis of Systems and
Software, pages 70–79, 2003.

[8] M. A. Hiltunen, R. D. Schlichting, X. Han,
M. Cardozo, and R. Das. Real-time dependable
channels: Customizing QoS attributes for dis-
tributed systems. IEEE Transactions on Parallel
and Distributed Systems, 10(6):600–612, 1999.

[9] J. Lofstead, F. Zhang, S. Klasky, and K. Schwan.
Adaptable, metadata rich IO methods for
portable high performance IO. In Proceedings
of the 2009 IEEE International Symposium on
Parallel & Distributed Processing (IPDPS’09),
Washington, DC, USA, 2009. IEEE Computer
Society.

[10] D. Mosberger and L. L. Peterson. Making
paths explicit in the Scout operating system. In
Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation,
pages 153–168, 1996.

[11] E. M. Nahum, D. J. Yates, J. F. Kurose, and
D. Towsley. Performance issues in parallelized
network protocols. In Proceedings of the First
Symposium on Operating Systems Design and
Implementation, November 1994.

[12] J. K. Ousterhout. Why threads are a bad idea
(for most purposes). In 1996 USENIX Technical
Conference, 1996. Invited Talk.

[13] D. Qiu and R. Srikant. Modeling and per-
formance analysis of bittorrent-like peer-to-peer
networks. In Proceedings of the 2004 conference
on Applications, technologies, architectures, and
protocols for computer communications, pages
367 – 378. ACM Press, New York, 2004.

[14] P. Willmann, S. Rixner, and A. L. Cox. An eval-
uation of network stack parallelization strategies
in modern operating systems. In Proceedings
of the USENIX Annual Technical Conference,
pages 91–96, June 2006.

5

