
Virtually Cool Ternary Content Addressable Memory

Suparna Bhattacharya
IBM Linux Technology Center, Indian Institute of Science

K. Gopinath
Indian Institute of Science

Abstract

Fast content addressable data access mechanisms have
compelling applications in today’s systems. Many of
these exploit the powerful wildcard matching capabilities
provided by ternary content addressable memories. For
example, TCAM based implementations of important al-
gorithms in data mining been developed in recent years;
these achieve an an order of magnitude speedup over
prevalent techniques. However, large hardware TCAMs
are still prohibitively expensive in terms of power con-
sumption and cost per bit. This has been a barrier to ex-
tending their exploitation beyond niche and special pur-
pose systems.

We propose an approach to overcome this barrier by
extending the traditional virtual memory hierarchy to
scale up the user visible capacity of TCAMs while mit-
igating the power consumption overhead. By exploiting
the notion of content locality (as opposed to spatial lo-
cality), we devise a novel combination of software and
hardware techniques to provide an abstraction of a large
virtual ternary content addressable space.

In the long run, such abstractions enable applications
to disassociate considerations of spatial locality and con-
tiguity from the way data is referenced. If successful,
ideas for making content addressability a first class ab-
straction in computing systems can open up a radical
shift in the way applications are optimized for memory
locality, just as storage class memories are soon expected
to shift away from the way in which applications are typ-
ically optimized for disk access locality.

1 Introduction

Associative lookup structures lie at the heart of many
computing problems. Content addressable memories
provide fast constant time lookups over a large array
of data (content keys) using dedicated parallel match
circuitry [10]. A ternary content addressable memory

(TCAM) enables compact representations by allowing
entries to be stored (and queried) so that any bit posi-
tion can be a 0, 1 or *, a don’t care (wildcard) bit that can
match both 0 and 1 [1].

The most widespread exploitation of this technology
occurs in high performance routers, for route lookup, ac-
cess control and packet classification. Examples of other
applications include database acceleration [3], frequent
items in data streams [4] and several algorithms that use
TCAM as an underlying primitive. TCAM based imple-
mentations of fundamental techniques in pattern match-
ing, machine learning and data mining, such as regular
expression matching [9], nearest neighbor search [11]
and subset queries using ternary bloom filters [6], are a
few examples that have been developed in recent years.
These techniques have diverse real world applications in
areas like information retrieval, image search, genomics,
proteomics, intrusion detection, and fraud surveillance.
What makes the TCAM abstraction such a powerful
primitive for many of these applications is the ability to
simultaneously search through a large number of sub-
spaces of a higher dimensional space in one shot. For
example, each subspace can be compactly represented as
one (or a few) TCAM entries using the don’t care bits to
cover ranges that constitute it.

Similarity search and nearest neighbor search are
widely used in many algorithms. Locality sensitive hash-
ing is an important technique that maps high dimension
feature vectors to lower dimension ones while keeping
similar content together. This can be done in a pre-
processing step where data points are hashed to a num-
ber of buckets. To perform a similarity search, a query is
hashed using the same locality sensitive hashing scheme
and the similarity search is performed on the data points
retrieved from the bucket corresponding to the query
hash. However, streaming algorithms that are becoming
common still find the “non-parallel” similarity search in
the last part slow. A recent technique[11] uses a modi-
fied version of locality sensitive hashing to hash data to

1

ternary values, enabling compact TCAM representations
and quick similarity searches for various classification
problems.

TCAMs may also be useful in many state space ex-
ploration problems (such as those encountered in verifi-
cation) where many states can be combined into a single
TCAM entry using Bloom filters, enabling a fast search
for previously visited states or error states.

The usage of content based lookup and similarity
matching in systems infrastructure is also growing. For
example, de-duplication techniques for cache [5], mem-
ory [2], IO [8] and storage data all exploit some form of
content lookup or comparison scheme. [6] shows how
ternary bloom filters can be used to achieve an order of
magnitude throughput improvement over current tech-
niques in high speed multiple string matching (MSM)
problems, a key component in data-deduplication, se-
quence alignment and intrusion detection techniques.
Hardware based range caches [12] have been proposed
for efficient state tracking to make intensive dynamic
analysis of programs viable.

Despite all of these developments, hardware TCAMs
have not made their way into mainstream computing1.
This is mainly because the power of TCAMs comes at
the price of high cost and energy consumption. A TCAM
uses about 20x more dynamic power per bit than an
SRAM [1, 6] (the overhead of parallel lookups). As
a result practical applications have been mostly limited
to niche areas where the tradeoff can be justified for a
TCAM size which fits the requirements, e.g. in high
speed packet classification (with 50x speedup). Both
the delay and energy consumed per access increase with
the size (width and number of entries) of a TCAM [1].
This restricts the extent to which the use of TCAMs can
be scaled so as to be viable in broader setting.

We think that there may be a way to break this bar-
rier. Most of the power consumed by a TCAM is ef-
fectively wasted in mismatches2. While this observation
has prompted many TCAM power optimizations [10],
hardware based techniques tend to have limited flexibil-
ity in adapting to actual usage scenarios. Perhaps, this
is an area where operating systems can help (with ar-
chitectural support). There is a well-established prece-
dent for solving such problems - consider the invention
of the memory hierarchy and virtual memory manage-
ment(VMM). Can such mechanisms be extended to scale
up the applicability of content addressable primitives?

In this paper we explore this possibility and raise some
related questions. What if content addressability were
to be made a first class abstraction in computing sys-

1even though they have been integrated with NPUs for years
2all matchlines are pre-charged before a search; lines that do not

match the search word are discharged, leaving only the lines that match
in high state

tems? Is it possible to design this abstraction in a way
that subsumes the prevalent location based addressing
model of data access? What important technical consid-
erations could determine its feasibility? What opportu-
nities might be enabled by this new infrastructure? How
would it impact the way applications are optimized for
locality?

2 Content Addressable VMM (CAVMM)

Let us see how the basic concept of ternary content ad-
dressable memories may be extended to a generalized
content based memory hierarchy by combining the ben-
efits of TCAMs and VMM principles. This enables
(multiple) applications to efficiently exploit the power of
the ternary search abstraction at a larger scale than that
achievable with hardware TCAM alone.

The proposed hierarchy includes a hardware TCAM
based cache and multiple levels of ternary content ad-
dressable stores (TCASs). These stores may be imple-
mented in hardware or software with different perfor-
mance vs efficiency tradeoffs, e.g high performance at
levels closer to the processor and high capacity at lev-
els that are further away. Content (search key) words
present in these stores are associated with references to
data in a traditional (hierarchical) location addressable
store (LAS). This data is returned as the result of a con-
tent addressed access (search) along with the key.

One of the novel features of this architecture is that
traditional notions of pages and blocks are replaced by
alternate notions like content subspace pages and con-
tent blocks which operate on a content key space (i.e. the
domain of the content word) instead of a location based
address space. The hardware support required may be
implemented using a content addressable memory man-
agement unit (CAMMU).

The design must be capable of exploiting the benefits
of spatial locality and location based addressing where
preferable, while enabling the full power of content ad-
dressability at a system level. This is achieved using con-
tent mapping schemes that preserve location based ad-
dressing where desired (e.g. as a default compatibility
mode or where it is more efficient).

Fig 1 illustrates how a content addressable virtual
memory hierarchy might be organized. We focus on one
possible implementation approach to make this exam-
ple concrete and highlight a few essential details. Many
potential variations or extensions may be explored us-
ing similar ideas. Fig 2 depicts a sample view from a
snapshot of the virtual content addressable space and its
representation in the CAVMM hierarchy. We assume an
implementation with two-levels of TCAS (in addition to
the content based cache) where the Level 1 store is imple-
mented using hardware TCAM and the Level 2 store (de-

2

scribed in more detail later) uses a software based imple-
mentation with DRAM as the underlying physical store.

Content Addressable
Store

Level 1

Content Addressable
Store

Level 2

Content Based Cache

Location
Addressable
Hierarchical
Store

Location Based Cache

Content Based
Page

Figure 1: Content Addressable VMM Example

Location Addressable Hierarchical Store: Traditional mem-
ory store where data is referenced by its memory address loca-
tion. Addressing could be physical or virtual, and the hierarchy
could span multiple levels of memory and secondary storage.
Location Based Cache: Caches data from the LAS.
Content Addressable Store: Associates ternary content words
with data references in a LAS3. When presented with a ternary
search word, matching content words and the corresponding
data referenced are retrieved. Since multiple entries can match,
a stream of multiple results may be returned.
Content Based Cache: Transparently caches content word to
data associations. The corresponding data is cached in the lo-
cation based cache. Since multiple matches are possible there
could be multiple entries for the same content word. Cache
prefetching is content locality based rather than address local-
ity based.

2.1 Content Paging and Content Blocks
The mapping from a content key to a physical location
can be as fine grained as a single memory word, effec-
tively dissociating spatial contiguity from content local-
ity. This breaks the traditional concept of pages as used
in virtual memory implementations.

A Content Subspace Page is the result of a search
matching a lower dimensional subspace of the content
key space, i.e. a collection of entries (in a TCAS) whose
content key word has a value that falls within the sub-
space. For example, the content key space may be broken
up into uniform subspaces of size 2k formed by setting
the least significant k bits of the search word as don’t
care when retrieving a content subspace page. The en-
tries belonging to a content subspace page could be dis-
tributed across the TCAS with no physical contiguity or
ordering implied. They form a logical representation of

3other interpretations are possible, e.g. inlined data

a page rather than a real memory page. Notice that a
content subspace page typically has holes within it (i.e it
may be sparse). As a result, the physical size (number
of TCAM entries) is usually smaller than a real mem-
ory page. On the other hand, since multiple entries may
match the same content word, it is even possible for the
physical size to be larger than a real memory page. In
general, it is not necessary to use only the least signifi-
cant bits or even contiguous bits when defining a content
subspace page, i.e. the subspace could range over any
specified dimension(s). Further, it is even possible for
a single ternary entry to straddle more than one content
subspace page.

A Content Block is a group of content words in a
TCAS that contain consecutive values in the content key
space and reference data at consecutive location units in
the location based address space. These entries can be
compressed into a single content block entry if the range
of content words can be represented as a ternary word.
This feature also enables location based addressing to
be trivially supported with minimal overhead by using a
single content word entry (cached in the content cache)
that represents a large ternary content block covering the
entire location address space.

2.2 Level 2 TCAS
How might a level 2 TCAS be implemented by an OS us-
ing an underlying DRAM store? A single ternary content
word is represented as a combination of a binary content
word and a binary wildcard mask. For each ternion in
the original content word that is set to ”*” (or don’t care),
the corresponding bit in the wildcard mask is set to 1 and
other bits are set to 0. If the unit of transfer between the
level 1 and level 2 store is a content subspace page, it
is sufficient to track these content words at the granular-
ity of such a content subspace. Regular memory based
data structures e.g. hash tables or integer radix trees may
be used to maintain key-value and range-value mappings
in DRAM. Instead of creating these structures, however,
we devise a simpler scheme that takes advantage of the
hardware TCAM at Level 1 (making physical locality or
size of content pages irrelevant for paging complexity).
This works as follows:

When all entries corresponding to a content subspace
page are collected and paged out4 from Level 1 to Level
2, a single special ternary content word entry is created
in the Level 1 TCAM to refer to the location of the con-
tent page in the Level 2 store. The same principle may
be extended to create a content page container subspace
(by paging out content subspace pages that fall within a
content page container subspace). Further, as we noted

4using a ternary subspace search and one bit in the content space set
aside to detect free entries for reclamation

3

01011 * 11101000
01011 * 11101001
01011 * 11101010
01011 * 11101011

 * * *
 * * *

01011 * 111010 * *

01011 * 111010 * *

01011* 111010 * *

Virtual Content Space Physical representation
(P1, P3, P4 in Level 1)

Physical representation
after page-out of P1 & P3

P1

P2

P3

P4

C
on

te
nt

 B
lo

ck

Level 2 CA-Store Level 2 CA-Store

Level 1 CA-Store Level 1 CA-Store

Content Cache Content Cache

Content
Pages

Figure 2: Sample Content Addressable Space

earlier, the notion of a page need not be limited to the
range covered by least significant bits in content space
- any subset of bits in content words could be defined
as a subspace page using wildcards. Different content
page subspace masks may be used by different applica-
tions (depending on the structure of content locality ex-
pected).

3 Content Locality Classification

If “locality of reference breeds the memory hierar-
chy” [7], then locality of content would determine the
potential value of a content addressable memory hierar-
chy. While a quantitative characterization of content lo-
cality in candidate applications requires further research,
we can attempt a qualitative assessment to obtain a sense
of the implications. We classify application workloads
into different categories based on the expected pattern of
matches in content addressable space.

1. Rare Hits: e.g. intrusion detection. In this case
most entries can be moved to level 2 and are brought
in when there is malicious traffic or input pattern
that is close to a malicious pattern

2. Frequent Same Item Hits: e.g. finding frequent
items in data streams. In this case, items above the
frequency threshold would be in Level 1 or even in
the content cache, while others may be moved in
and out on-demand based on available capacity

3. Clustered or Nearby Item Hits: In this case, con-
tent subspace paging will help as it brings in the
items mostly likely to be required into level 1 while
bulk of the entries can reside at level 2

4. (Uniformly) Random Item Hits: In this case per-
formance will depend on the ratio of available level
1 capacity and total number of entries.

In many cases content locality characteristics depend
on the input distribution, e.g. similarity search, reg-
ular expression matching, packet classification and de-
duplication. As a starting assumption, we might expect
a few frequently hit clusters and potentially many rare
hit clusters. In program analysis, dynamic analysis asso-
ciations exhibit a high range locality [12]. For database
join, it depends on the join selectivity and cardinality.

Other potential implications In traditional location
based addressing, associations are modeled through spa-
tial relationships (e.g. spatial contiguity, index arith-
metic, pointers, hashing). Using content based address-
ing, these can be expressed directly to the underlying
system. This can free the application from spatial con-
straints and enable a lower level optimizer to move data
around at a fine granularity without breaking any de-
pendencies. With search driven execution becoming a
common paradigm, data and operational associations are
heavily used in general purpose middleware and appli-
cation software. In a given deployment context, many

4

conditions change rarely. Thus a small subset of asso-
ciations are likely to be used most often. Content based
caching might be very effective in reducing overheads in
these situations.

4 Implementation Challenges

Characterizing content locality and content key work-
ing sets of existing workloads is an important first step
in determining the design space parameters for feasibil-
ity. Early implementations of a CAVMM may be built
without requiring any extra architecture support in order
to evaluate minimal hardware system mechanisms that
are essential. Besides this, there are many design issues
that need to be researched, such as policies for allocation
and reclamation of TCAS (and LAS), sharing of space
across processes, and ternary compaction optimizations
that might be applied by the OS (e.g. at the time of
pageout) to minimize the number ternary word entries.
Furthermore, mechanisms for concurrent access to CAS
by independent threads needs to be explored in depth
along with a study of how transactional consistency can
be achieved, in the concurrent context, when multiple en-
tries/locations are updated on certain “elementary” CAS
operations.

However, the larger design issue for debate and dis-
cussion, once basic questions of viability have been ad-
dressed, is the choice of interface through which the ab-
straction is exposed to applications. While the idea of
a fully transparent virtual memory model where a con-
tent key is treated as just another address reference is
an appealing one, it also raises some conceptual com-
plications, the answers to which are not yet clear. For
example: Is there a need for new instructions to express
operations involving ternary content keys? If not how
should compilers handle and generate content key vari-
ables, particularly when there are multiple entries with
the same key? How could atomicity be handled implic-
itly and at what cost? An exposed interface, on the other
hand, might be simpler to design but complex for users.

TCAM Extensions Currently TCAMs are usually
configured to return the first match in the event of multi-
ple matches (using a priority encoder). This can be very
inefficient in many situations e.g. database operations,
content page retrieval. Support for efficient bulk transfer
for multiple matches is therefore an important require-
ment. TCAMs need not be the only hardware content
addressability mechanism used in a CAVMM hierarchy.
For example, hardware range caches or E-TCAMs which
allow non-power of two ranges to be represented effi-
ciently and other pattern matching accelerators may also
be worth consideration.

5 Conclusions

The advent of flash and storage class memories is chang-
ing virtual memory and storage hierarchy. We bring in
another dimension by proposing that content address-
ability be considered as a first class abstraction in virtual
memory design.

While we have provided a flavor of how such ideas
may be implemented, and where they might be useful,
we believe that we have only scratched the surface of
technical challenges and implications of a promising new
direction of research. One advantage of our approach is
that it enables a natural extension of VMM to support
content addressability, while retaining full compatibility
with traditional location based addressing. A shift from
spatial locality to content locality based optimization can
open up possibilities as radical as that opened up by the
shift from disk based optimizations to those for storage
class memories. Exploration of these opportunities will
require a close collaboration between memory system ar-
chitects, operating system and software researchers.

References
[1] AGRAWAL, B., AND SHERWOOD, T. Ternary CAM Power and Delay

Model: Extensions and Uses. IEEE Trans. on VLSI Systems 16, 5 (May
2008).

[2] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing memory den-
sity by using ksm. OLS (2009).

[3] BANDI, N., SCHNEIDER, S., AGRAWAL, D., AND ABBADI, A. E. Hard-
ware Acceleration of Database Operations Using Content Addressable
Memories. DaMoN (2005).

[4] BANDI, N., SCHNEIDER, S., AGRAWAL, D., AND ABBADI, A. E. Fast
Data Stream Algorithms using Associative Memories. SIGMOD (2007).

[5] BISWAS, S., FRANKLIN, D., SAVAGE, A., DIXON, R., SHERWOOD, T.,
AND CHONG, F. T. Multi-Execution: Multicore Caching for Data-Similar
Executions . ISCA (2010).

[6] GOEL, A., AND GUPTA, P. Small Subset Queries and Bloom Filters Using
Ternary Associative Memories, with Applications. SIGMETRICS (2010).

[7] JACOB, B., NG, S. W., AND WANG, D. T. Memory systems: Cache,
dram, disk. Elsevier Inc. (2008).

[8] KOLLER, R., AND RANGASWAMI, R. I/o deduplication: Utilizing content
similarity to improve i/o performance. FAST (2010).

[9] MEINERS, C. R., PATEL, J., NORIGE, E., TORNG, E., AND LIU, A. X.
Fast Regular Expression Matching using Small TCAMs for Network Intru-
sion Detection and Prevention Systems. USENIX ATC (2010).

[10] PAGIAMTZIS, K., AND SHEIKHOLESLAMI, A. Content Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and Survey. IEEE
Journal of Solid State Circuits 41, 3 (Mar. 2006).

[11] SHINDE, R., GOEL, A., GUPTA, P., AND DUTTA, D. Similarity Search
and Locality Sensitive Hashing using Ternary Content Addressable Mem-
ories. SIGMOD (2010).

[12] TIWARI, M., AGRAWAL, B., MYSORE, S., VALAMEHR, J. K., AND
SHERWOOD, T. A Small Cache of Large Ranges: Hardware Methods for
Efficiently Searching, Storing, and Updating Big Dataflow Tags. Micro
(2008).

5

