
Your computer is already a distributed system.

Why isn’t your OS?

Andrew Baumann

Simon Peter, Adrian Schüpbach,
Akhilesh Singhania, Timothy Roscoe

Paul Barham, Rebecca Isaacs

Systems Group, ETH Zurich Microsoft Research, Cambridge

c© Systems Group | Department of Computer Science | ETH Zurich HotOS, 19th May 2009

Introduction

I Observation: Modern multicore hardware is a network,
and exhibits classic networking effects

I The OS should be designed as a distributed system

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 2

Outline

Observations
Latency
Heterogeneity
Dynamic changes

Implications
Message passing vs. shared memory
Replication and consistency
Heterogeneity

The multikernel architecture

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 3

Observations
Does this look like a network to you?

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 4

Communication latency
Cycles to access cache from core 0

I Can shared data structures take advantage of this?

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 5

Communication latency
Cycles to access cache from core 0

I Can shared data structures take advantage of this?

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 5

Communication latency
Cycles to access cache from core 0

I Can shared data structures take advantage of this?
19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 5

Node heterogeneity

I Within a system:
I Programmable NICs
I GPUs
I FPGAs (in CPU sockets)

I Architectural differences on a single die:
I Streaming instructions (SIMD, SSE, etc.)
I Virtualisation support, power management

I Existing OS architectures have trouble accommodating this

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 6

Node heterogeneity

I Within a system:
I Programmable NICs
I GPUs
I FPGAs (in CPU sockets)

I Architectural differences on a single die:
I Streaming instructions (SIMD, SSE, etc.)
I Virtualisation support, power management

I Existing OS architectures have trouble accommodating this

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 6

Dynamic changes

I Hot-plug of devices, memory, (cores?)
I Power-management

I Partial failure

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 7

Dynamic changes

I Hot-plug of devices, memory, (cores?)
I Power-management
I Partial failure

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 7

Summary

I Latency, heterogeneity, dynamic changes
I All classic characteristics of a distributed, networked system
I Why don’t we program the machine this way?

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 8

The OS as a distributed system

What are the implications of building
an OS as a distributed system?

I Extreme position: clean slate design
I Fully explore ramifications
I No regard for compatibility

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 9

Outline

Observations
Latency
Heterogeneity
Dynamic changes

Implications
Message passing vs. shared memory
Replication and consistency
Heterogeneity

The multikernel architecture

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 10

Message passing vs. shared memory

I Access to remote shared data can be seen as a blocking RPC
I Processor stalled while line is fetched or invalidated
I Limited by latency of interconnect round-trips

I Performance scales with size of data (number of cache lines)

I By sending an explicit RPC (message), we:
I Send a compact high-level description of the operation
I Reduce the time spent blocked, waiting for the interconnect

I Potential for more efficient use of interconnect bandwidth
I Cf. RPC vs. DSVM in distributed systems

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 11

Message passing vs. shared memory

I Access to remote shared data can be seen as a blocking RPC
I Processor stalled while line is fetched or invalidated
I Limited by latency of interconnect round-trips

I Performance scales with size of data (number of cache lines)
I By sending an explicit RPC (message), we:

I Send a compact high-level description of the operation
I Reduce the time spent blocked, waiting for the interconnect

I Potential for more efficient use of interconnect bandwidth
I Cf. RPC vs. DSVM in distributed systems

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 11

Why message passing?

I We can reason about it
I Decouples system structure from

inter-core communication mechanism
I Communication patterns explicitly expressed
I Naturally supports heterogeneous cores
I Naturally supports non-coherent interconnects (PCIe)

I Better match for future hardware
I . . .with cheap explicit message passing (e.g. Tile64)
I . . .without cache-coherence (e.g. Intel 80-core)

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 12

Message passing vs. shared memory: tradeoff
2×4-core Intel (shared bus)

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16

La
te

n
cy

 (
cy

cl
es

 ×
 1

0
0

0
)

Cache lines

2 cores, shared
8 cores, shared

2 cores, message
8 cores, message

Shared: clients modify shared array (no locking) Message: URPC to server core
19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 13

Replication
Given no sharing, what do we do with the state?

I Some state naturally partitions
I Other state must be replicated
I Used as an optimisation in previous systems:

Tornado, K42 clustered objects
Linux read-only data, kernel text

I We argue that replication should be the default

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 14

Consistency

I How do we maintain consistency of replicated data?
I Depends on consistency and ordering requirements, e.g.:

TLBs (unmap) single-phase commit
Memory reallocation (capabilities) two-phase commit
Cores come and go (power management, hotplug) agreement

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 15

Change of programming model: why wait?

I In a traditional OS, achieving consistency implies blocking
I e.g. unmap, global TLB shootdown

Idea: change programming model:
I Don’t wait: do something else in the meantime
I Make such operations split-phase from user space

I Propose a change, receive success/failure notification
=⇒ tradeoff latency vs. overhead

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 16

Heterogeneity

I Message-based communication handles core heterogeneity
I Can specialise implementation and data structures

I Doesn’t deal with other aspects
I What should run where?
I How should complex resources be allocated?

I Our solution based on constraint logic programming
[Schüpbach et al., MMCS’08]

I System knowledge base stores rich, detailed representation
of hardware, performs online reasoning

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 17

Outline

Observations
Latency
Heterogeneity
Dynamic changes

Implications
Message passing vs. shared memory
Replication and consistency
Heterogeneity

The multikernel architecture

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 18

The multikernel architecture

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 19

Optimisation
Sharing as an optimisation in multikernels

I We’ve replaced shared memory with explicit messaging
I But sharing/locking might be faster between some cores

I Hyperthreads, or cores with shared L2/3 cache
=⇒ Re-introduce shared memory as optimisation

I Hidden, local
I Only when faster, as decided at runtime
I Basic model remains split-phase

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 20

Conclusion
I Modern computers are inherently distributed systems

I Communication latency, network effects
I Heterogeneity
I Dynamic behaviour

I We should be programming them as such
I Message passing vs. sharing
I Replication, consistency
I Explicit management of heterogeneity

I Multikernel: a new OS architecture
based on these ideas

I Barrelfish: our implementation

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 21

www.barrelfish.org

www.barrelfish.org

Conclusion
I Modern computers are inherently distributed systems

I Communication latency, network effects
I Heterogeneity
I Dynamic behaviour

I We should be programming them as such
I Message passing vs. sharing
I Replication, consistency
I Explicit management of heterogeneity

I Multikernel: a new OS architecture
based on these ideas

I Barrelfish: our implementation

19.05.2009 Your computer is already a distributed system. Why isn’t your OS? 21

www.barrelfish.org

www.barrelfish.org

	Observations
	Latency
	Heterogeneity
	Dynamic changes
	

	Implications
	Message passing vs. shared memory
	Replication and consistency
	Heterogeneity

	The multikernel architecture

