idgenbssi ische H Ziirich E :
Swiss Federal Institute of Technology Zurich

Systems @ ETH zivicn

Your computer is already a distributed system.
Why isn’t your OS?
Andrew Baumann

Simon Peter, Adrian Schipbach, Paul Barham, Rebecca Isaacs
Akhilesh Singhania, Timothy Roscoe

Systems Group, ETH Zurich Microsoft Research, Cambridge

p | Department of Computer Science EfH



Introduction

» Observation: Modern multicore hardware is a network,
and exhibits classic networking effects

» The OS should be designed as a distributed system

Your computer is already a distributed system. Why isn’t your OS?



Outline

Observations
Latency
Heterogeneity
Dynamic changes

Your computer is already a distributed system. Why isn’t your OS?



Observations

Does this look like a network to

you?

[ ram |

[ ram |

| ram |

SATA

poe (T e ]
PC\E
e T

CPU, || CPU,
L2 L2
CPU, || CPU,
L2 L2
L3

=

CPU, || CPU,
L2 L2
CPU, || CPU,
L2 L2

N

CPU, || CPU,
L2 L2

CPU, || CPU,
L2 L2

CPU, || CPU,
L2 L2
[ b5 ]

<::> cry, || cpu,
Ll e
[ s ]

|

X |

sara 0
PCle <:| N

GbE <:|

Floppy disk drive

CPU, (| CPU,
L2 L2

CPU, || CPU,
L2 L2

CPU, || CPU,
L2 L2
[ 5]

Y B0 ED
L2 L2
[ s |

[ ram ]

| ram

Your computer is already a distributed system. Why isn’t your OS?




Eidgensssische Technische ochschule Zirich
i Feders nsttute o

Communication latency

Cycles to access cache from core 0 DD D j
= @ @@
X |

L1 2

L2: 15/ 130
=
75

]
-




Communication latency

Cycles to access cache from core 0

]
||

L1 2
L2:1

HN N
(N

130

Al

D

N




Communication latency

Cycles to access cache from core 0

L1 2
L2:1

Al

]
=L

=
1=

o |
|
] ]
]

]

(N

]

(RN

]

X |

]

N

» Canshared data structures take advantage of this?




Node heterogeneity

» Within a system:
» Programmable NICs
» GPUs
» FPGAs (in CPU sockets)
» Architectural differences on a single die:

» Streaming instructions (SIMD, SSE, etc.)
» Virtualisation support, power management

Your computer is already a distributed system. Why isn’t your OS?



Node heterogeneity

» Within a system:
» Programmable NICs
» GPUs
» FPGAs (in CPU sockets)
» Architectural differences on a single die:
» Streaming instructions (SIMD, SSE, etc.)
» Virtualisation support, power management

» Existing OS architectures have trouble accommodating this

Your computer is already a distributed system. Why isn’t your OS?



Dynamic changes

» Hot-plug of devices, memory, (cores?)
» Power-management

Your computer is already a distributed system. Why isn’t your OS?



Dynamic changes

» Hot-plug of devices, memory, (cores?)
» Power-management
» Partial failure

Your computer is already a distributed system. Why isn’t your OS?



Summary

» Latency, heterogeneity, dynamic changes
» All classic characteristics of a distributed, networked system
» Why don’t we program the machine this way?

Your computer is already a distributed system. Why isn’t your OS?



What are the implications of building
an OS as a distributed system?

» Extreme position: clean slate design
» Fully explore ramifications
» No regard for compatibility

Your computer is already a distributed system. Why isn’t your OS?



Outline

Implications
Message passing vs. shared memory
Replication and consistency
Heterogeneity

Your computer is already a distributed system. Why isn’t your OS?



Message passing vs. shared memory

» Access to remote shared data can be seen as a blocking RPC

» Processor stalled while line is fetched or invalidated
» Limited by latency of interconnect round-trips

» Performance scales with size of data (number of cache lines)

Your computer is already a distributed system. Why isn’t your OS?



Message passing vs. shared memory

» Access to remote shared data can be seen as a blocking RPC

» Processor stalled while line is fetched or invalidated
» Limited by latency of interconnect round-trips

v

Performance scales with size of data (number of cache lines)
By sending an explicit RPC (message), we:

» Send a compact high-level description of the operation
» Reduce the time spent blocked, waiting for the interconnect

v

Potential for more efficient use of interconnect bandwidth
Cf.RPCvs. DSVM in distributed systems

v

v

Your computer is already a distributed system. Why isn’t your OS?



Why message passing?

» We can reason about it

» Decouples system structure from
inter-core communication mechanism
» Communication patterns explicitly expressed
» Naturally supports heterogeneous cores
» Naturally supports non-coherent interconnects (PCle)
» Better match for future hardware

» ...with cheap explicit message passing (e.g. Tile64)
» ...without cache-coherence (e.g. Intel 80-core)

Your computer is already a distributed system. Why isn’t your OS?



Message passing vs. shared memory: tradeoff

2x4-core Intel (shared bus)

Latency (cycles x 1000)

2 cores, shared ——
8 cores, shared ——<—
2 cores, message —+—
8 cores, message ——+—

 ——— T — e — 1 1
4 6 8 10 12 14 16
Cache lines

: clients modify shared array (no locking) Message: URPC to server core

Your computer is already a distributed system. Why isn’t your OS?



Replication

Given no sharing, what do we do with the state?

» Some state naturally partitions
» Other state must be replicated
» Used as an optimisation in previous systems:

Tornado, K42 clustered objects
Linux read-only data, kernel text

» We argue that replication should be the default

Your computer is already a distributed system. Why isn’t your OS?



Consistency

» How do we maintain consistency of replicated data?
» Depends on consistency and ordering requirements, e.g.:

TLBs (unmap) single-phase commit
Memory reallocation (capabilities) two-phase commit
Cores come and go (power management, hotplug) agreement

Your computer is already a distributed system. Why isn’t your OS?



Change of programming model: why wait?

» Inatraditional OS, achieving consistency implies blocking
» e.g. unmap, global TLB shootdown

Idea: change programming model:

» Don’t wait: do something else in the meantime
» Make such operations split-phase from user space
» Propose a change, receive success/failure notification

= tradeoff latency vs. overhead

Your computer is already a distributed system. Why isn’t your OS?



Heterogeneity

» Message-based communication handles core heterogeneity
» Can specialise implementation and data structures

» Doesn't deal with other aspects
» What should run where?
» How should complex resources be allocated?

» Our solution based on constraint logic programming
[Schipbach et al, MMCS’08]

» System knowledge base stores rich, detailed representation
of hardware, performs online reasoning

Your computer is already a distributed system. Why isn’t your OS?



Outline

The multikernel architecture

Your computer is already a distributed system. Why isn’t your OS?



The multikernel architecture

User

space:

0s:

Hardwatre:

App || App Application Application Application
e E e e e S ... ... .--,
0S node 0S node 0S node OS node :
State State State : - State :
replica replica replica Async messages replica | |u
1
- OE O E E E E EE . -I
ia32-6 ia32-6
ARM NIC 32704 PR ces Gl
CPU CPU
< Interconnect >

Your computer is already a distributed system. Why isn’t your OS?



Optimisation

Sharing as an optimisation in multikernels

» We've replaced shared memory with explicit messaging
» But sharing/locking might be faster between some cores
» Hyperthreads, or cores with shared L2/3 cache
— Re-introduce shared memory as optimisation

» Hidden, local
» Only when faster, as decided at runtime
» Basic model remains split-phase

\ Traditional OSes > < Multikernel |

Shared state, Finer-grained Clustered objects, Distributed state,

one-big-lock locking partitioning replica maintenance

Your computer is already a distributed system. Why isn’t your OS?



Conclusion

» Modern computers are inherently distributed systems
» Communication latency, network effects
» Heterogeneity
» Dynamic behaviour
» We should be programming them as such
» Message passing vs. sharing
» Replication, consistency
» Explicit management of heterogeneity
» Multikernel: a new OS architecture
based on these ideas

Your computer is already a distributed system. Why isn’t your OS?


www.barrelfish.org

Conclusion

» Modern computers are inherently distributed systems
» Communication latency, network effects
» Heterogeneity
» Dynamic behaviour
» We should be programming them as such
» Message passing vs. sharing
» Replication, consistency
» Explicit management of heterogeneity
» Multikernel: a new OS architecture
based on these ideas

» Barrelfish: our implementation

www.barrelfish.org

Your computer is already a distributed system. Why isn’t your OS?


www.barrelfish.org

	Observations
	Latency
	Heterogeneity
	Dynamic changes
	

	Implications
	Message passing vs. shared memory
	Replication and consistency
	Heterogeneity

	The multikernel architecture

