
Your computer is already a distributed system.

Why isn’t your OS?

Andrew Baumann

Simon Peter, Adrian Schüpbach,
Akhilesh Singhania, Timothy Roscoe

Paul Barham, Rebecca Isaacs

Systems Group, ETH Zurich Microsoft Research, Cambridge

c© Systems Group | Department of Computer Science | ETH Zurich HotOS, 19th May 2009



Introduction

I Observation: Modern multicore hardware is a network,
and exhibits classic networking effects

I The OS should be designed as a distributed system
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Communication latency
Cycles to access cache from core 0

I Can shared data structures take advantage of this?
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Node heterogeneity

I Within a system:
I Programmable NICs
I GPUs
I FPGAs (in CPU sockets)

I Architectural differences on a single die:
I Streaming instructions (SIMD, SSE, etc.)
I Virtualisation support, power management

I Existing OS architectures have trouble accommodating this
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Dynamic changes

I Hot-plug of devices, memory, (cores?)
I Power-management

I Partial failure
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Summary

I Latency, heterogeneity, dynamic changes
I All classic characteristics of a distributed, networked system
I Why don’t we program the machine this way?
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The OS as a distributed system

What are the implications of building
an OS as a distributed system?

I Extreme position: clean slate design
I Fully explore ramifications
I No regard for compatibility
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Message passing vs. shared memory

I Access to remote shared data can be seen as a blocking RPC
I Processor stalled while line is fetched or invalidated
I Limited by latency of interconnect round-trips

I Performance scales with size of data (number of cache lines)

I By sending an explicit RPC (message), we:
I Send a compact high-level description of the operation
I Reduce the time spent blocked, waiting for the interconnect

I Potential for more efficient use of interconnect bandwidth
I Cf. RPC vs. DSVM in distributed systems
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Why message passing?

I We can reason about it
I Decouples system structure from

inter-core communication mechanism
I Communication patterns explicitly expressed
I Naturally supports heterogeneous cores
I Naturally supports non-coherent interconnects (PCIe)

I Better match for future hardware
I . . .with cheap explicit message passing (e.g. Tile64)
I . . .without cache-coherence (e.g. Intel 80-core)
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Message passing vs. shared memory: tradeoff
2×4-core Intel (shared bus)
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Shared: clients modify shared array (no locking) Message: URPC to server core
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Replication
Given no sharing, what do we do with the state?

I Some state naturally partitions
I Other state must be replicated
I Used as an optimisation in previous systems:

Tornado, K42 clustered objects
Linux read-only data, kernel text

I We argue that replication should be the default
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Consistency

I How do we maintain consistency of replicated data?
I Depends on consistency and ordering requirements, e.g.:

TLBs (unmap) single-phase commit
Memory reallocation (capabilities) two-phase commit
Cores come and go (power management, hotplug) agreement
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Change of programming model: why wait?

I In a traditional OS, achieving consistency implies blocking
I e.g. unmap, global TLB shootdown

Idea: change programming model:
I Don’t wait: do something else in the meantime
I Make such operations split-phase from user space

I Propose a change, receive success/failure notification
=⇒ tradeoff latency vs. overhead
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Heterogeneity

I Message-based communication handles core heterogeneity
I Can specialise implementation and data structures

I Doesn’t deal with other aspects
I What should run where?
I How should complex resources be allocated?

I Our solution based on constraint logic programming
[Schüpbach et al., MMCS’08]

I System knowledge base stores rich, detailed representation
of hardware, performs online reasoning
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The multikernel architecture
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Optimisation
Sharing as an optimisation in multikernels

I We’ve replaced shared memory with explicit messaging
I But sharing/locking might be faster between some cores

I Hyperthreads, or cores with shared L2/3 cache
=⇒ Re-introduce shared memory as optimisation

I Hidden, local
I Only when faster, as decided at runtime
I Basic model remains split-phase
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Conclusion
I Modern computers are inherently distributed systems

I Communication latency, network effects
I Heterogeneity
I Dynamic behaviour

I We should be programming them as such
I Message passing vs. sharing
I Replication, consistency
I Explicit management of heterogeneity

I Multikernel: a new OS architecture
based on these ideas

I Barrelfish: our implementation
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