
Peloton: Coordinated Resource Management
for Sensor Networks

Jason Waterman, Geoffrey Werner Challen, and Matt Welsh
School of Engineering and Applied Sciences, Harvard University

{waterman,challen,mdw}@eecs.harvard.edu

Abstract
This paper makes the case that operating system designs for
sensor networks should focus on the coordination of resource
management decisions across the network, rather than merely
on individual nodes. We motivate this view by describing the
challenges inherent to achieving a globally efficient use of sen-
sor network resources, especially when the network is subject
to unexpected variations in both load and resource availability.
We present Peloton, a new distributed OS for sensor networks
that provides mechanisms for representing distributed resource
allocations, efficient state sharing across nodes, and decentral-
ized management of network resources. We outline the Peloton
OS architecture and present three sample use cases to illustrate
its design.

1 Introduction
Operating system designs for sensor networks [5, 8, 11]
have focused primarily on managing resources for indi-
vidual nodes. However, a sensor network is not merely
a collection of nodes operating independently: a sensor
network must coordinate behavior across multiple nodes
to achieve high efficiency and data fidelity. Unlike con-
ventional distributed systems, nodes in a sensor network
do not span multiple administrative domains, nor does
the network typically support multiple applications with
different users. Rather, it is natural to conceive of a sen-
sor network as a single programmable entity that oper-
ates in a coordinated fashion to achieve some high-level
system goal.

Managing limited resources is a key challenge in sen-
sor networks. To achieve high efficiency, it is necessary
to orchestrate resource management decisions across the
network as a whole. For example, consider a network to
monitor seismic activity at a volcano [18, 19]. Nodes
must decide how much of their limited energy to in-
vest in sampling, storing, and processing local sample
data; transmitting signals to the base station; and listen-
ing for and routing packets for other nodes deeper in the
routing tree. The resource load on each node is a com-
plex function of the activity level of the volcano, quality
of the sensor data, and packet forwarding demand from
other nodes. This problem becomes more complex when
nodes are powered by solar cells, since the energy budget
fluctuates. It is important to note that both resource load
and resource availability fluctuate over time: an offline
static solution cannot suffice.

Coordinating resource management in a sensor net-

work has received considerable attention [1, 7, 18]. How-
ever, programming these complex distributed behaviors
is still done in an ad hoc fashion, using bare-bones APIs
provided by the node-level OS. Subtle changes to node-
level behavior (such as the radio listening duty cycle or
choice of routing path) can have a tremendous impact on
the overall efficiency and data yield of the network. Ex-
isting systems provide few tools to assist developers in
designing correct and efficient solutions.

In this paper, we argue the operating system de-
sign for sensor networks should enable coordinated and
global resource management while providing the appro-
priate abstractions and mechanisms to support whole-
network optimizations. We argue that by providing a rich
set of intra- and inter-node resource management inter-
faces that expose resource availability, share state across
nodes, and allocate resources across multiple nodes, it is
possible to develop more efficient applications with far
less effort.

We propose Peloton,1 a new distributed sensor OS
based on three architectural components. The first, vec-
tor tickets, is a programming abstraction representing the
right to consume resources across a set of nodes for per-
forming some operation, such as routing data. The sec-
ond, state sharing, provides mechanisms for nodes to
share state on local resource availability and coordinate
activities. The third, distributed ticket agents, permit re-
source management decisions to be decomposed across
nodes, clusters, and the network as a whole.

In this paper, we make the case for Peloton, contrast-
ing our approach to existing systems. We describe the
Peloton OS architecture and describe through three use
cases how it can be used to implement energy-efficient
and coordinated mechanisms for cluster-based routing,
adaptive sensor duty cycling, and optimized reliable data
collection. We conclude with a discussion of future re-
search directions.

2 The Case for Peloton
Designing a sensor network to make efficient use
of scarce resources while yielding high-quality data

1In a road cycling race, the peloton is a pack of cyclists that ride
closely together in order to collectively reduce wind drag and thereby
save energy.



presents a number of challenges. Not only are node re-
sources limited, but small local changes in a node’s op-
eration can have a ripple effect throughout the network.
Moreover, nodes are mutually dependent upon each other
to relay data, maintain time synchronization, perform
collaborative event detection, and maintain spatial sen-
sor coverage. It is not enough to conceive of a network
as a mere collection of independent nodes, yet that is the
dominant programming abstraction supported by exist-
ing sensor network operating systems [5, 8, 11].

As applications increase in complexity, reasoning
about the global effects of local changes to node behav-
ior can be difficult. The most common form of resource
management is simple duty cycling, in which a (usu-
ally static) period is assigned to each node to achieve
a given target lifetime. This works fine for applica-
tions with simple periodic behavior and few configura-
tion changes over time. However, applications with more
dynamic resource requirements need more sophisticated
approaches, involving adaptation over time as well as
both local and global knowledge of resource availability.

To achieve the greatest efficiency, nodes cannot sim-
ply make local decisions on how to invest their resources.
Rather, it is necessary to perform resource adaptations in
a coordinated fashion, where nodes share information on
their local state and work together to assign tasks and al-
locate node-level resources to achieve the greatest com-
mon good. Such coordination can be done either within
local clusters of nodes, or network-wide. While network-
wide coordination has the potential for greater optimiza-
tion, this must be traded off against the higher overhead
for communicating demand and availability information
to a centralized controller.

Existing sensor node OSs provide little support
for collective resource management. TinyOS [8] and
SOS [5] provide only low-level interfaces for managing
the hardware state of the node. Pixie [11] and Eon [15]
provide greater control over node-level resource avail-
ability and tuning, but still focus only on individual
nodes. In SORA [12], nodes perform purely local, de-
centralized tuning of their actions, but without any ex-
plicit coordination across nodes.

The need for coordination in a sensor network to
achieve good resource efficiency has been recognized
in the literature [1, 12, 7, 18]. However, previous ap-
proaches have been ad hoc in nature, focusing on point
cases of specific problems, such as routing, tracking, or
sensor coverage. Most of the proposed algorithms have
only been studied in simulations, and the few implemen-
tations would have required substantial effort to build,
given only low-level messaging support provided by the
OS. As a result, general-purpose abstractions for coordi-
nated resource management have yet to emerge.

Similar resource management problems arise in many
other distributed systems, including Internet-based ser-
vices [13, 16], grids [3] and clusters [2, 14]. Sen-
sor networks present new challenges in this space due
to the vastly different workloads; severe constraints on
resources; and the need for low-overhead coordination

Vector ticket

Pixie OS

State sharing Ticket agent

Application logic

Pixie

SS TA
App logic

Node 1
Node 2

Node 3

Node 4
Node 5

<E1, E2, E3,
E4, E5>

Node 1: energy 340.2J, bw 192 kbps...
Node 2: energy 496.7J, bw 48 kbps...
Node 3: energy 100.2J, bw 37 kbps...
Node 4: energy 933.0J, bw 195 kbps...
Node 4: energy 56.4J, bw 142 kbps...

Shared
tuple space

Pixie

SS TA
App logic

Pixie

SS TA
App logic

Pixie

SS TA
App logic

Figure 1: A Peloton network consisting of five nodes.

mechanisms. Our design of Peloton takes inspiration
from these previous systems, but is tailored for this new
domain.

3 Peloton Architecture
Peloton builds upon our previous work on Pixie [11], a
node-level OS for sensor nodes that focuses on enabling
resource aware programming. In Pixie, application com-
ponents request and receive resource tickets from the
OS. A ticket represents a time-bounded right to consume
some quantum of a given resource, such as energy, ra-
dio bandwidth, or memory. Tickets represent a flexible
currency for resource management within the node and
enable a rich space of policies for adapting sensor node
operation to variations in load and resource availability.
Pixie provides a resource allocator for each physical re-
source that estimates availability and responds to ticket
allocation requests accordingly.

As an example, an application can tune the amount of
data it attempts to transmit based on varying radio link
conditions (e.g., due to interference or mobility) by re-
questing a bandwidth ticket in the desired amount. If the
request cannot be satisfied under the current link condi-
tions, a ticket with a smaller amount of bandwidth is is-
sued, providing direct feedback on resource availability.
Likewise, Pixie supports a range of energy scheduling
policies to target a given battery lifetime by allocating
energy tickets at a rate to conform to the schedule.

Resource tickets provide fine-grained visibility and
control over resource usage. However, their use requires
substantial application logic to request and manage tick-
ets. For this reason, Pixie introduces a resource broker
abstraction that mediates between applications and the
underlying physical resources. Brokers serve as agents
that apply policies such as prioritization, scheduling, and
weighted fair queueing, thereby shielding application
code from the details of managing tickets. For example,
Pixie’s bandwidth broker automatically manages ticket
allocations across a set of application components to en-
sure that the highest-value data is transmitted when radio
link conditions vary.

2



In Pixie (as well as similar systems, such as Eon [15]),
all resource management decisions are made at the node
level and there is no support for inter-node coordina-
tion. The key idea in Peloton is to extend the Pixie
ticket abstraction to support vector tickets that repre-
sent a vector of resource requirements across a set of
nodes for performing some desired operation. Likewise,
Peloton introduces distributed ticket agents that perform
commonly-used resource management policies in a co-
ordinated way across nodes. The Peloton architecture is
shown in Figure 1.

3.1 Vector Tickets
The key resource management abstraction in Peloton
is the vector ticket (VT), which represents an alloca-
tion of resources across a set of nodes. A vector ticket
V = T1, T2, ...Tn consists of a vector of resource tickets
Ti, each of which is a tuple 〈n, R, c, te〉. A ticket repre-
sents the time-bounded right to consume up to c units of
resource R until expiry time te, at node n. An individ-
ual ticket can represent allocations of multiple resources.
For example, transmitting a radio packet consumes both
radio bandwidth and energy.

In Peloton, coordinated resource management is per-
formed through the allocation and manipulation of vec-
tor tickets. As a simple example, performing a reliable
download of a chunk of data from a given sensor node
would require a vector ticket representing the energy and
bandwidth consumed at the sensor node for reading data
from flash and transmitting packets, as well as the en-
ergy and bandwidth used by intermediate nodes along
the routing path to the base station. A single VT can
capture the complete resource envelope of an operation
spanning multiple nodes, providing a powerful mecha-
nism for tracking and controlling resource allocations in
a network-wide fashion.

VTs are allocated by ticket agents that track resource
availability, possibly across a set of nodes, and distribute
resource allocations to meet some desired policy. This
allows resource allocations to be performed individually
by nodes, collectively by a group of nodes, or globally by
a base station. A VT is delivered to the nodes identified
in the VT using an efficient local or global broadcast pro-
tocol such as Trickle [10]. In order to consume resources,
a node must acquire a vector ticket, either locally (from
the node’s local ticket agent) or from a third-party agent,
such as the base station or another node in the network.

As in Pixie, VTs are also used to track resource con-
sumption, since all resource usage must be tied to a cor-
responding VT, as well as to provide feedback to appli-
cations in terms of resource availability. One strength
of resource tickets is that they decouple resource alloca-
tion from usage; a ticket may be acquired at one time,
and redeemed at a later time. Resource tickets are time-
bounded as indicated by the expiry time te. This provides
the ticket agent a measure of control over how many out-
standing resource allocations have been granted. Tickets
are not guarantees, only hints: a ticket may be revoked
before its expiry time if conditions change.

VTs provide nodes autonomy in terms of how they
consume resources allocated in the ticket. As an exam-
ple, a global ticket agent might perform network-wide
energy scheduling by tracking estimated energy usage
across nodes, and doling out energy VTs to nodes in an
attempt to meet a target battery lifetime. However, nodes
are free to use the energy allocated in the VT as they
see fit, such as for sampling data, relaying packets, or
processing. This design strikes a balance between the
high overhead required to enable fine-grain “microman-
agement” of node operation versus complete autonomy
without any coordination.

3.2 State Sharing
A critical requirement for coordination is the ability for
nodes to efficiently share state. Peloton builds in mecha-
nisms for node state sharing within neighborhoods, clus-
ters, and across the network. Building upon previous sys-
tems [17, 20], Peloton provides a simple API whereby a
node can publish local state into a shared tuple space,
and read shared state from the tuple space. Nodes use
this API to publish information on local resource avail-
ability (energy, bandwidth, memory, and storage capac-
ity), which is used by ticket agents, described below, to
implement resource allocation policies.

Peloton maintains a global but weakly-consistent
view of the tuple space across all nodes. The update
rate and freshness of data in the tuple space is a function
of the topological distance between two nodes. For ex-
ample, updates from direct radio neighbors are refreshed
rapidly, while data from distance nodes is refreshed less
often, and may represent a coarse time-windowed aver-
age of that node’s state. A node can always request an
direct update from another node to obtain its latest state
if necessary.

This design provides both good efficiency (in terms
of radio messages) and consistency within local neigh-
borhoods. Delayed and aggregated state propagation to
more distant nodes in the network is acceptable since
consistency requirements typically diminish with topo-
logical distance; two nodes near each other in the net-
work are more likely to require careful coordination.
Of course, state sharing operations consume energy and
bandwidth, and are accounted for using resource tickets.

3.3 Ticket Agents
Vector tickets and state sharing provide the underlying
mechanisms to enable resource management in Pelo-
ton. Resource allocation policies are provided by ticket
agents, which consume information published to the tu-
ple space and allocate vector tickets accordingly. Peloton
provides an extremely flexible model for ticket agents,
which can be either centralized (e.g., at the base sta-
tion) or decentralized (e.g., running on each node in the
network). Decentralized ticket agents coordinate their
decision-making using the tuple space to synchronize
and share needed state.

Peloton’s vector ticket model enables hierarchical re-
source allocation and delegation, since the node that al-

3



locates a vector ticket need not be the same as the nodes
on which it is consumed. For example, nodes can use a
leader election protocol [7] to form clusters, and nodes
within each cluster delegate resource allocation author-
ity to the ticket agent at the clusterhead. The cluster-
head can receive frequent updates of node state and make
fine-grained resource allocations locally. A central con-
troller at the base station can coordinate cluster-level al-
locations by communicating only with clusterheads, al-
locating coarser-grained vector tickets for each cluster.

In this model, the base station acts as just another
participant in the system, although it has substantially
more computational horsepower and memory for track-
ing network-wide state. Moreover, Peloton naturally
decomposes resource management authority across a
multi-tiered network, such as one that contains both
lightweight mote-class devices as well as embedded mi-
croservers [4].

Peloton generalizes the global resource allocation
policies provided by Lance [18], which focuses on
network-wide optimization of raw data collection in a
sensor network. Peloton extends Lance to support a
much more general form of global network control, both
in terms of broadening the range of resources and actions
that can be controlled, as well as distributing allocation
authority into the network.

4 Application Vignettes
To highlight the benefits of the Peloton architecture, in
this section we discuss three use cases that leverage the
programming model.

4.1 Adaptive Cluster-Based Routing
A common approach to energy-efficient routing in sen-
sor networks is to assign clusterheads within the net-
work that take responsibility for receiving and forward-
ing packets for members of the cluster. Since cluster-
heads consume more energy than cluster members, it
is necessary to rotate clusterheads periodically to bal-
ance energy load. In LEACH [7], the desired fraction
of clusterheads is defined as a (static) design parameter.
Nodes elect themselves clusterheads through a simple
randomized leader-election protocol. Clusterheads de-
fine a TDMA communication schedule for each of the
cluster members and collect, aggregate, and route aggre-
gate data to the base station.

In LEACH, nodes pay no attention to their own energy
reserves, nor that of other nodes in the network: it is as-
sumed that the network will exhibit a uniform traffic load
and thus remaining energy will be balanced across the
nodes. However, this cannot accommodate varying traf-
fic loads, link quality, and topology constraints caused
by the spatial distribution of nodes. A better approach
is to use information on available energy and radio link
quality [6] to optimize clusterhead assignments.

Using Peloton, implementing an energy-aware variant
of LEACH is relatively straightforward. Based on the en-
ergy consumption profile of nodes within a local neigh-
borhood, each node can determine the probability with

which it will elect itself as a clusterhead. Each cluster-
head becomes the (temporary) ticket agent for the cluster
members, assigning vector tickets for bandwidth and en-
ergy use to manage the cluster’s communication sched-
ule and resource consumption envelope.

This simple example highlights the value of an OS
structure that makes distributed resource visibility and
allocations explicit. Peloton cleanly separates the under-
lying details of resource management from the higher-
level coordination logic specific to the routing protocol.
Furthermore, Peloton’s underlying abstractions make it
easy to extend the protocol to consider tradeoffs such as
the impact of forwarding load on nodes with poor radio
links and variable traffic generation rates.

4.2 Adaptive Sensor Duty Cycling
Sensor duty-cycling is another common energy saving
technique, but it must be implemented with care as the
specific schedule affects data fidelity, network connec-
tivity, and sensor coverage. Thus, there is a tension be-
tween lowering resource costs and overall value of data
produced by the network. In many cases it is difficult
or impossible to determine an appropriate duty-cycling
schedule statically.

One example of a dynamic duty-cycling protocol is
RACP [9], which tunes the sleep and wake cycles of indi-
vidual nodes to maintain adequate sensor coverage while
considering variations in nodes’ energy availability. In
RACP, a node can nominate itself as a head node, which
sleeps until a predetermined wakeup interval. This re-
quires that other nearby nodes act as sponsors, staying
awake to maintain local sensor coverage at the cost of
increased energy expenditure.

The RACP scheme maps nicely onto the Peloton
primitives. Through local state sharing, nodes learn of
each other’s energy availability and spatial coverage. En-
tering a sleep state requires that a node allocate a VT to
cover the energy requirements for the sponsor nodes that
will stay awake on its behalf. Peloton’s role is to decou-
ple the shared mechanisms needed to coordinate resource
management, while the specific policies are provided by
the RACP ticket agent running on each node.

4.3 Energy-Efficient Data Collection
Another application enabled by Peloton is the collecting
of high-data-rate signals from a sensor network. Per-
forming a reliable transfer of a sample stream stored on a
sensor node, which might consist of kilobytes of data, re-
quires substantial bandwidth and energy resources. Our
previous work on Lance [18] demonstrated the ability to
optimize the overall utility of data collected from a sen-
sor network while adhering to a node-level energy sched-
ule. However, Lance relies on a centralized controller,
running at the base station, that has global knowledge
of the data stored and the energy profile of each node.
This requires potentially high overhead for scheduling
data transfers and introduces a single point of failure.

The use of Peloton’s vector tickets and shared state
abstraction opens up the possibility of decentralizing this

4



process. One approach is to induce hierarchical con-
trol by electing clusterheads in the network in a man-
ner similar to LEACH. The clusterhead would maintain
a consistent view of the data stored by nodes within its
neighborhood and perform a local optimization to de-
termine which signals should be allocated energy and
bandwidth resources. The clusterhead acts as the lo-
cal ticket agent, managing vector tickets for each sig-
nal download operation. Once signals are aggregated at
the clusterhead, multiple clusterheads can coordinate to
schedule the transfer of the highest-utility signals to the
base station. This two-tiered approach reduces commu-
nication overhead through local decision making within
each cluster, and allows clusterheads to more accurately
estimate relative data utilities across a range of signals.

These three examples are intended to be simple and
intuitive, though they only scratch the surface of the
kinds of coordination schemes that Peloton is intended
to support. Peloton’s design captures commonly-used
mechanisms for managing sensor network resources. It
is important to keep in mind that Peloton does not elimi-
nate the need for careful policy design. Our hope is that
by starting with the right abstractions, this will be much
easier to do than it has been in previous systems.

5 Discussion and Conclusions
We believe that thinking of a sensor network as a coor-
dinated ensemble, rather than simply as a collection of
individual nodes, is necessary to achieve efficient allo-
cation of scarce network resources. The need for coor-
dination, both explicit and implicit, requires a rethink-
ing of the OS architecture for sensor networks, which
to date has been focused on managing node-level re-
sources alone. We have described the Peloton OS ar-
chitecture, which provides three essential mechanisms to
enable coordinated resource management: vector tick-
ets, state sharing, and distributed ticket agents. Through
three canonical use cases, we have confidence that Pelo-
ton is an effective approach to structuring complex in-
network resource management decisions.

We are currently implementing Peloton on top of the
Pixie [11] node-level OS. Pixie provides much of the
node-level machinery needed to track and allocate node
resources. The key challenge is enabling efficient shar-
ing within the network, as well as decomposing resource-
management decisions across ticket agents within the
network. We believe that Peloton will make it easier to
develop collaborative applications that react to varying
node state and resource conditions. We plan to deploy
Peloton as part of a volcano-monitoring sensor network
that will perform in-network processing of seismic data.

References
[1] N. Burri, P. von Rickenbach, and R. Wattenhofer. Dozer: ultra-

low power data gathering in sensor networks. In IPSN ’07: Pro-
ceedings of the 6th international conference on Information pro-
cessing in sensor networks, pages 450–459, New York, NY, USA,
2007. ACM.

[2] D. G. Feitelson and L. Rudolph. Gang scheduling performance
benefits for fine-grain synchronization. Journal of Parallel and
Distributed Computing, 16:306–318, 1992.

[3] I. Foster. Globus toolkit version 4: Software for service-oriented
systems. In IFIP International Conference on Network and Par-
allel Computing, number 3779 in LNCS, pages 2–13, 2005.

[4] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek,
M. Vieira, D. Estrin, R. Govindan, and E. Kohler. The TENET
Architecture for Tiered Sensor Networks. In Proc. ACM Confer-
ence on Embedded Networked Sensor Systems (Sensys), Boulder,
CO, November 2006.

[5] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M. Sri-
vastava. SOS: A dynamic operating system for sensor networks.
In Proc. Third International Conference on Mobile Systems, Ap-
plications, And Services (Mobisys), 2005.

[6] M. J. Handy, M. Haase, and D. Timmermann. Low energy adap-
tive clustering hierarchy with deterministic cluster-head selec-
tion. In MWCN ’02: 4th International Workshop on Mobile and
Wireless Communications Network, pages 368–372, Stockholm,
Sweden, 2002.

[7] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor net-
works. In Proc. the 33rd Hawaii International Conference on
System Sciences (HICSS), January 2000.

[8] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Proc. the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 93–
104, Boston, MA, USA, Nov. 2000.

[9] C.-f. Hsin and M. Liu. Network coverage using low duty-cycled
sensors: random & coordinated sleep algorithms. In IPSN ’04:
Proceedings of the 3rd international symposium on Information
processing in sensor networks, pages 433–442, New York, NY,
USA, 2004. ACM.

[10] P. Levis, N. Patel, S. Shenker, and D. Culler. Trickle: A
self-regulating algorithm for code propagation and maintenance
in wireless sensor networks. In Proc. the First USENIX/ACM
Symposium on Networked Systems Design and Implementation
(NSDI), 2004.

[11] K. Lorincz, B. rong Chen, J. Waterman, G. Werner-Allen, and
M. Welsh. Resource aware programming in the pixie os. In Sen-
Sys ’08: Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 211–224, 2008.

[12] G. Mainland, D. C. Parkes, and M. Welsh. Decentralized, adap-
tive resource allocation for sensor networks. In NSDI ’05: Pro-
ceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation, pages 315–328, 2005.

[13] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. De-
sign and implementation tradeoffs for wide-area resource discov-
ery. In HPDC ’05: Proceedings of the High Performance Dis-
tributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE
International Symposium, pages 113–124, Washington, DC,
USA, 2005. IEEE Computer Society.

[14] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware request distribu-
tion in cluster-based network servers. In ASPLOS-VIII: Proceed-
ings of the eighth international conference on Architectural sup-
port for programming languages and operating systems, pages
205–216, New York, NY, USA, 1998. ACM.

[15] J. Sorber, A. Kostadinov, M. Brennan, M. Garber, M. Corner,
and E. D. Berger. Eon: A Language and Runtime System for
Perpetual Systems. In Proc. ACM SenSys, November 2007.

[16] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfef-
fer, A. Sah, and C. Staelin. An economic paradigm for query
processing and data migration in Mariposa. In Proc. the 3rd In-
ternational Conference on Parallel and Distributed Information
Systems, September 1994.

[17] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In Proc. the First USENIX/ACM Symposium
on Networked Systems Design and Implementation (NSDI ’04),
March 2004.

[18] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance:
optimizing high-resolution signal collection in wireless sensor
networks. In SenSys ’08: Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 169–182, 2008.

[19] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In
Proc. 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2006), Seattle, WA, November 2006.

[20] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: A
neighborhood abstraction for sensor networks. In Proc. the Inter-
national Conference on Mobile Systems, Applications, and Ser-
vices (MOBISYS ‘04), June 2004.

5


