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Abstract
Flash memory is the largest change to storage in recent his-
tory. Most research to date has focused on integrating flash as
persistent storage in file systems, with little emphasis on vir-
tual memory paging. However, the VM architecture in most
of the commodity operating systems is heavily customized for
using disks through software layering, request clustering, and
prefetching.

We revisit the VM hierarchy in light of flash memory and
identify mechanisms that inhibit utilizing its full potential. We
find that software latencies for a page fault could be as high as
the time taken to read a page from flash, and that swap systems
are overly tuned towards the characteristics of disks.

Based on this study, we propose a new system design,
FlashVM, that pages directly to flash memory, avoids unnec-
essary disk-based optimizations, and orders page writes to
flash memory without any firmware support. With flash prices
dropping exponentially and speeds improving, we argue that
FlashVM can support memory intensive applications more eco-
nomically than conventional DRAM-based systems.

1 Introduction

Tape is Dead, Disk is Tape, Flash is Disk,
RAM locality is King. –Jim Gray [6]

Flash memory is aggressively following Moore’s law:
it is cheaper than DRAM and faster than disks. With
these trends, research has focused on integrating flash de-
vices as a replacement to disks for storage [1, 24]. We as-
sert, however, that flash also provides the underlying per-
formance and price characteristics to back virtual mem-
ory. Specifically, its low read latency allows faster page
access, and its relatively longer write latency is hidden
through asynchronous page write operations.

While flash-based virtual memory has been previously
investigated [11, 13, 19], its use has been debated. Sys-
tem administrators relying on anecdotal wisdom inte-
grate flash disks as swap space to improve the respon-
siveness of their systems [3]. Others have advocated

avoiding flash for swapping due to its limited write en-
durance [17]. In this paper, we investigate the truth be-
hind these issues and revisit the VM hierarchy in light of
flash memory.

Servers are often statically provisioned with enough
memory to avoid swapping, but swap performance still
matters for laptop and desktop systems. Workloads on
these systems vary widely: running too many programs
at once or working on a larger-than-normal data set can
cause memory pressure and hence swapping. In both
cases, swapping to flash can provide comparable perfor-
mance at a lower price, or better performance if the sys-
tem limits the amount of DRAM that can be installed.

Based on the price and performance characteristics
of flash, we propose FlashVM, a restructured virtual
memory system tuned for swapping to flash memory.
FlashVM gives complete control over swapping to the
VM system, rather than splitting it between the VM sys-
tem and the block subsystem.

We also show how the VM hierarchy in most mod-
ern operating systems is overly tuned to the performance
characteristics of disks. This has resulted from decades
of disk being theonlyoption for swapping [4, 15]. Since
flash media behavior differs from disks, most of these
disk-focused optimizations inhibit the optimal use of
these devices. For example, flash devices have large per-
formance differences based on write patterns (sequential
is much better than random), but not read patterns.

This paper revisits the Linux virtual memory hierarchy
and presents opportunities to improve its performance
with flash memory. First, we find that software laten-
cies vary widely and can be as high as the read access
latencies of flash memory, and thus must be streamlined.
Second, we find that the Linux VM system makes no at-
tempt to optimize write behavior. With experiments on
flash and disks, we show that with the current Linux VM
system, memory intensive applications can execute from
60% slower to 65% faster when compared to traditional
swap disk alternatives.
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Device Sequential (MB/s) Random 4K-IO/s
Read Write Read Write

HDD 56 45 120-300/s
USB flash 11.7 4.3 150/s 20/s

SSD 250 170 35K/s 3.3K/s
PCI-e flash 700 600 102K/s 101K/s

Table 1: Hard disk and NAND flash memory character-
istics.

2 Flash Memory: Now and Then
NAND flash memory technology has witnessed several
big changes in the recent years. Many new manufactur-
ers have joined the race to produce faster and cheaper
flash devices [23]. In this section, we give a back-
ground on the key flash characteristics that distinguish
them from modern hard disks.

Solid-state disks (SSDs) integrate firmware to provide
a disk-like interface, such as SATA, on top of flash stor-
age. This firmware, the Flash Translation Layer (FTL)
[9], remaps the logical block addresses to physical flash
addresses. It also provides wear leveling to increase
write endurance. This layer is particularly designed for
compatibility with existing file systems and storage in-
terfaces, and may not be ideal for virtual memory. Fur-
thermore, SSDs present a persistent storage abstraction,
and also store the address mapping. This is unnecessary
if using flash for virtual memory, as swap files are inher-
ently temporary and volatile.

Transfer rates: Flash media differs from disks in
terms of the performance variation between different de-
vices, low read latencies, and their read/write perfor-
mance asymmetry.

In contrast to disks, there is a wide range of perfor-
mance for flash devices available in the market today, as
shown in Table 1. Inexpensive devices such as USB flash
sticks or camera memories offer moderate read band-
width but have poor random-write performance. Solid-
state disks (SSD), with a standard SATA interface, pro-
vide much better performance, about 3x better than the
fastest hard disks, with 100MB/s sustained transfer rates.
This results from intelligent block mapping schemes,
parallel I/O accesses to multiple flash chips (similar to
RAID) and write buffering [12]. High-end flash drives
connected with the PCI-e interconnect interface are even
faster, thereby enabling terabytes of virtual memory with
speeds nearer to DRAM. Thus, a flash-enabled VM sys-
tem must accomodate a variety of device performance.

Unlike disks, flash storage provides fast random read
access (0.1ms vs. 8ms). Write access, however, is
slower and rewriting a block requires erasing it com-
pletely, which may take up to 1.5ms. As the erase block
is often larger than a file system block or memory page
(128kB vs. 4 kB), FTLs often use log structuring to

avoid rewriting flash pages in-place [1]. The asymmetry
between read and write performance encourages usages
of flash to optimize for asynchronous sequential writes,
while the low latency of flash allows synchronous ran-
dom reads.

Write endurance: Unlike disks, flash restricts the to-
tal number of writes to each block. Typical flash devices
can sustain 100,000 to 1 million overwrites. Thus, 1-10
petabytesof data can be written to a 10GB flash over its
lifetime. However, this assumes that the system writes to
every block evenly. While file systems can greatly reduce
write traffic through caching, paging loses its usefulness
if pages are not written to storage and hence is less af-
fected by caching.

To analyze whether flash devices have the overwrite
capacity for paging workloads, we analyze a three-day
block access trace for swapping traffic on a research
workstation running Linux and configured with 700MB
of physical memory. We use a pseudo device driver to
intercept the block I/O requests to the swap device. Our
measurements indicate a write rate of 948 MB per day
for a swap partition of 4 GB. With this write rate, and
factoring in wear leveling, a low-end 4 GB flash device
with a limit of 100K overwrites can last over 700 years
when writes are spread across the device. The maximum
swap rate this device could support for five years is over
600 page writes per second.

Cost: Until recently, flash memory was far more ex-
pensive than either disk or DRAM. However, flash mem-
ory capacity and cost per unit is following Moore’s Law
much more aggressively than DRAM. SanDisk will be
offering flash devices with prices around $2.5 per GB
in capacities of 60,120 and 240GB; by mid of 2009 [8].
In contrast, 1GB of DRAM today costs ten times more.
Some vendors like Samsung are even planning to hike
DRAM prices [5]. Thus, it may be soon cost effec-
tive to populate a system with large quantities of flash
rather than DRAM to satisfy memory intensive work-
loads. However, flash is not expected to reach the price
of disk [18], so it is best used where its particular char-
acteristics, such as low read latency, are critical.

3 Virtual Memory Management
Virtual memory paging has focused on swapping to disk
for decades [4, 15]. As a result, the performance char-
acteristics of disks, such as seek latency, have become
ingrained in its design. In particular, we find that three
characteristics of disks are assumed: (1) random read ac-
cess is slow, (2) disk I/O latencies are much higher than
other software latencies, and (3) swap devices are inte-
grated as disk storage also being used by file systems. In
this section, we describe the virtual memory hierarchy in
Linux and show how it is overly tuned to these proper-
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Figure 1: Linux virtual memory hierarchy.

ties of disks. Paging to disks follows a similar I/O path
in other operating systems [16, 21].

Slow random reads: Virtual memory systems prefetch
adjacent pages to improve read performance [2, 15].
Even though the Linux VM system makes no effort to
allocate virtually contiguous pages together on disk, it
prefetches 8 consecutive pages on disk by default. Thus
prefetch, of effectively random pages, is free as the ma-
jor cost of paging, seeking and rotational latency, must
be paid for the first page. In the context of flash mem-
ory, where random access is cheap, prefetching has little
benefit for amortizing seek latencies.

Long access latencies: Disks have access times, typ-
ically milliseconds, that are much longer than common
software latencies. As a result, a paging request can pass
through many layers of software without significantly
impacting performance.

As shown in Figure 1, a swapped-out page passes
through multiple layers in the VM hierarchy. The swap
subsystem hands pages to the Generic Block Layer,
which is responsible for the conversion of pages into
block I/O requests, known asbio requests in Linux ter-
minology [2].

Thesebio requests are then queued by the I/O sched-
uler. The I/O scheduler can reorder, merge or delay a
request before passing it to the device driver. A request
is delayed to merge it with other contiguous requests that
arrive in the near future. This delay can range from 5-
6ms [10] to minimize disk seek latencies while reading
or writing. Lower in the stack, requests can be delayed
or reordered again by the device driver. These additional
software layers, which improve disk performance, sub-
stantially delay requests. However, flash devices do not
suffer the same latencies as disks, so these delays can
prove burdensome.

Shared with file system: One reason for these layers is
that swap devices are generally shared with file systems.
Thus, the OS must provide a common access interface
for both file systems and virtual memory. Removing this
requirement entails dedicating flash to virtual memory
or providing a separate fast-path from the VM system
directly to the flash device driver.

4 FlashVM: Revisiting VM Hierarchy
Based on the declining price of flash relative to DRAM
and its increasing performance, we propose that future
systems be configured with a large amount of dedicated
flash to serve as backing store. This can be either at-
tached directly to the system, or a reserved portion of
a solid-state disk managed separately. Flash fits vir-
tual memory behavior because (1) writes to free memory
pages are asynchronous, while (2) synchronous random
reads are fast, allowing frequent page faults.

However, this design stresses the virtual memory hier-
archy, as paging may be far more frequent than in sys-
tems today. Hence, we revisit the virtual memory hierar-
chy and describe the design challenges for FlashVM. We
also show why simply using flash devices for extending
virtual memory in existing commodity operating systems
is not going to tap their full potential.

4.1 Software latencies
As shown in Section 3, each swapped out page passes
through many layers in the VM hierarchy. This is be-
cause the same I/O path below the generic block layer
serves both the VM hierarchy and the storage stack.
However, the low latency characteristics of flash devices
mean that the standard I/O path adds additional software
latencies for swapping.

We quantify this additional overhead by measuring the
performance difference between hard and soft page faults
to a RAM disk. A soft page fault need not copy data or
access the I/O path; it adds a page back to the page table.
In contrast, a hard page fault requires copying data from
swap storage back into the memory and then adding it to
the page table. Thus, the difference between the latency
for the two faults, less the mandatory cost of copying
the page by the RAM disk driver, gives the additional
overhead.

We measure these overheads on a 2.5GHz Intel Core
2 Quad with a 512 MB RAM disk acting as a swap de-
vice. Soft page-fault latency averages 5µs, and copying a
4,096 byte buffer takes 10µs (when out of cache). In con-
trast, the average latency for a hard page fault is 196µs
with a significant standard deviation of 5,660µs. Thus,
the additional overhead associated with each hard page
fault averages 181µs. This overhead is largely due to a
small number of long-latency page faults that contribute
a high percentage of the total execution time.
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Write Pattern ext2:HDD ext2:Flash nilfs:Flash
A S A S A S

Seq. (MB/s) 39.4 25.3 20 1.1 16.8 0.63
Random (IO/s) 1,522 120 66 0.1 2,817 149

Table 2: Impact of log-ordering on write performance of
flash (A: asynchronous, S: synchronous).

The bulk of this overhead is spent for CPU schedul-
ing and additional delays introduced by the Linux swap
management subsystem to avoid the possible congestion
of paging traffic. For a disk, where the minimum read
latency exceeds 500µs, these overheads are minor. How-
ever, this overhead isnearly the same as the raw read
latency of flash memory. Thus, software overheads can
double the time to swap in a page from a flash device.
For FlashVM, the VM system must access flash directly,
rather than pass through these generic block interfaces,
to avoid this additional overhead.

4.2 Ordering Page Writes
As mentioned in Section 2, random writes perform
poorly on flash memory. Log-structured file systems
[20], or log-structuring in the FTL, improve the perfor-
mance of flash disks by writing all blocks sequentially.
However, the Linux VM system provides no support for
swapping to sequential blocks on disk. Rather, the deci-
sion ofwhereto swap is made independently ofwhento
swap, leading to many random writes. Today, even for
high-end SSDs that leverage log-structuring internally,
there is a high disparity between the peformance of se-
quential and random writes (43,000 vs. 3,300 4K-IO/s).
As we show below, flash devices in general may perform
even worse than hard disks for random writes.

We measure the sequential bandwidth and random
IO/s for synchronous and asynchronous writes (VM page
writes are asynchronous in Linux). We use a 15.8 GB ca-
pacity IBM 2.5 inch SSD (Model 43W7617, SATA 1.0
interface), with a random read access latency of 0.2 ms
and sustained read bandwidth of 69 MB/s. Table 2 com-
pares the write performance of flash with ext2 and a sim-
ple log-structured file system, nilfs [14]) against a 7200
RPM disk with ext2.

At a high level, the hard disk is better at sequential
access and the flash device is better at random access.
However, the performance depends strongly on the file
system layout and whether writes are synchronous or
asynchronous. With a conventional file-system layout
(ext2), the flash device performs23 times worsethan the
hard disk at asynchronous random writes. However, with
nilfs’ log structure the flash device performs85% better
than the disk. Thus, sequential writes are critical to high
performance.

In addition, synchronous writes are generally much
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applications.

more expensive for flash. These writes may incur high
erase latencies and simultaneous cleaning overheads
within the SSD. In contrast, asynchronous writes amor-
tize these costs over a larger group of pages.

Thus, the FlashVM system should cluster writes into
large sequential groups to optimize for write speed.
While high-end flash translation firmware provides this
clustering for file systems, they unnecessarily store
the virtual-to-physical block address mapping persis-
tently [7].

To explore these effects on real programs, we inves-
tigate the VM access patterns on unmodified Linux ker-
nel 2.6.27 with a 4 GB swap partition on the SSD and
512 MB of physical memory. We profile the swap block-
access patterns of 4 applications: a recursive Quick Sort
of a large array of random integers, ImageMagick for re-
sizing a large JPEG image, Firefox while surfing the web
and streaming videos, and Adobe Reader while viewing
pdf files of different sizes. We also trace the swap block
accesses on a desktop machine for three consecutive days
and on a VMWare virtual machine for 3 hours.

Figure 2 shows the access patterns of these workloads.
We characterize assequentialthose requests submitted to
a block device that were adjacent to the previous request;
otherwise we consider themrandom. All the access pat-
terns are read-dominated, partially because Linux by de-
fault prefetches additional 8 pages on a page fault.

These traces illustrate two important points about the
nature of swapping traffic. First, random reads are com-
mon, accounting for more than 20% of the I/O requests
from the large programs and the whole-system traces.
Flash disks greatly improve performance for these, and
hence have the potential to dramatically improve appli-
cation performance. For example, ImageMagick, with
more than 10% random reads, improved execution time
on flash by 65% compared to disk.

More importantly, random writes, which perform
poorly on flash, are also common and at times exceed
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20% of the accesses in these workloads. As shown ear-
lier in Table 2, these perform 23 times worse than disk.
They are mainly responsible for QuickSort peforming
60% slower on flash than on disk.

It follows from these results that simply applying an
existing VM system to a flash device, despite better ran-
dom read performance, may not improve paging perfor-
mance. Rather, the VM system must be tuned for the
particular characteristics of flash, in particular avoidance
of random writes.

4.3 Prefetching
As mentioned in Section 3, Linux opportunistically
prefetches 8 pages with each swapped-in page. Prefetch-
ing for disks is useful to amortize their high seek latency
and to overlap I/O with other computation [22]. On the
other hand, flash devices provide an order of magnitude
lower read access latency and little penalty for random
access. Therefore, prefetching functions embedded in
the VM system must be updated for flash. We found,
for example, that disabling prefetching for ImageMagick
improved performance with flash by 27% and for Quick-
Sort by 5%, which directly follows from our discussion
on slow random reads in Section 3.

5 Conclusions
FlashVM is a promising alternative to existing vir-
tual memory architectures. With flash memory getting
cheaper than DRAM and faster than disks, we foresee
systems populated with large quantities of flash rather
than DRAM for satisfying memory-intensive workloads.
However, the variable and different performance charac-
teristics of flash memory as compared to disks require the
re-design of memory management in modern operating
systems. In this paper, we list the primary design chal-
lenges for FlashVM and demonstrate that it has the po-
tential to provide significant performance improvements
for real-world applications.
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