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Abstract
Current operating systems provide programmers an insuffi-
cient interface for expressing consistency requirements for
accesses to system resources, such as files and interpro-
cess communication. To ensure consistency, programmers
must to be able to access system resources atomically and
in isolation from other applications on the same system.
Although the OS updates system resources atomically and
in isolation from other processes within a single system
call, not all operations critical to the integrity of an appli-
cation can be condensed into a single system call.

Operating systems should support transactional execu-
tion of system calls, providing a simple, comprehensive
mechanism for atomic and isolated accesses to system re-
sources. Preliminary results from a Linux prototype imple-
mentation indicate that the overhead of system transactions
can be acceptably low.

1 Introduction
Operating systems manage resources for user applications,
but do not provide a mechanism for applications to group
operations into logically consistent updates. The consis-
tency of application data can be undermined by system
failures and concurrency. Consistency is guaranteed by al-
lowing critical operations occur atomically (i.e., they oc-
cur all at once or not at all) and in isolation from the rest
of the system (i.e., partial results of a series of operations
are not visible and cannot observe concurrent operations).
Mechanisms for data consistency exist at different layers
of the software stack. For instance, locks use mutual ex-
clusion to provide consistency for user-level data struc-
tures, and database transactions provide consistent updates
to database-managed secondary storage.

Unfortunately, the POSIX system call API has lagged
behind in providing support for consistent updates to OS-
managed resources. The OS executes a single system call
atomically and in isolation, but it is difficult, if not im-
possible, for applications to extend these guarantees to an
operation that is too complex to fit into a single system
call. This paper proposes adding system transactions to
the system call API. A system transaction executes a se-
ries of system calls in isolation from the rest of the system
and atomically publishes the effects to the rest of the sys-
tem. System transactions provide a simple and powerful
way for applications to express consistency requirements

for concurrent operations to the OS.
Only the application knows when its data is in a consis-

tent state, yet system resources that are critical to ensur-
ing consistent updates, such as the file system, are outside
of user control. In simple cases, programmers can serial-
ize operations by using a single system call, such as us-
ing rename to atomically replace the contents of a file.
Unfortunately, more complex operations, such as software
installation or upgrade, cannot be condensed into a single
system call. An incomplete software install can leave the
system in an unusable state. Executing the entire software
install atomically and in isolation would be a powerful tool
for the system administrator, but no mainstream operating
system provides a combination of system abstractions that
can express it.

In the presence of concurrency, applications must ensure
consistency by isolating a series of modifications to impor-
tant data from interference by other tasks. Concurrency
control mechanisms exposed to the user (e.g., file locking)
are clumsy and difficult to program. Moreover, they are of-
ten insufficient for protecting a series of system calls from
interference by other applications running on the system,
especially when the other applications are malicious.

Figure 1 shows an example where an application wants
to make a single, consistent update to the file system by
checking the access permissions of a file and conditionally
writing it. This pattern is common in setuid programs. Un-
fortunately, the application cannot express to the system
its need for the access and open system calls to see a
consistent view of the filesystem namespace.

The inability of an application to consistently view and
update system resources results in serious security and
programmability problems. The example in Figure 1 il-
lustrates a time-of-check-to-time-of-use (TOCTTOU) race
condition, a major and persistent security problem in mod-
ern operating systems. During a TOCTTOU attack, the at-
tacker changes the file system namespace using symbolic
links between the victim’s access control check and its ac-
tual use, perhaps tricking a setuid program into over-
writing a sensitive system file like the password database.
TOCTTOU races also arise in temporary file creation and
other accesses to system resources. While conceptually
simple, TOCTTOU attacks are present in much deployed
software and are difficult to eliminate. At the time of writ-
ing, a search of the U.S. national vulnerability database for
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Victim Attacker

if(access(’foo’)){
symlink(’secret’,’foo’);

fd=open(’foo’);
write(fd,...);
...

}

Victim Attacker

symlink(’secret’,’foo’);
sys xbegin();
if(access(’foo’)){
fd=open(’foo’);
write(fd,...);
...

}
sys xend();

symlink(’secret’,’foo’);

Figure 1: An example of a TOCTTOU attack, followed by an
example of eliminating the race with system transactions. The
attacker’s symlink is serialized (ordered) either before or after the
transaction, and the attacker cannot see partial updates from the
victim’s transaction, such as changes to atime.

the term “symlink attack” yields over 600 hits [3].
In practice, the lack of concurrency control in the sys-

tem call API has been addressed in an ad hoc manner by
adding new, semantically heavy system calls for each new
problem that arises. Linux has been addressing TOCT-
TOU races by encouraging developers to traverse the di-
rectory tree in user space rather than in the kernel using
the recently introduced openat() family of system calls.
Similarly, Linux kernel developers recently added a new
close-on-exec flag to fifteen system calls to eliminate a
race condition between calls to open and fcntl [6].
Individual file systems have introduced new operations,
such as the Google File System supporting atomic append
operations [7] or Windows adding transaction support to
NTFS [11]. Rather than requiring users to lobby OS devel-
opers for new system calls, why not allow users to solve
their own problems by composing a series of simple sys-
tem calls into an atomic and isolated unit?

In this position paper, we advocate adding system trans-
actions to the system call API to provide the user a simple
and powerful mechanism to express consistency require-
ments for system resources. The relative success of par-
allel programming with database transactions as compared
to threads and locking is a strong indicator that transactions
are a useful, natural abstraction for programmers to reason
about consistency. By wrapping a series of system calls in
a transaction, programmers can continue using the POSIX
API in a secure manner, eliminating the need for many of
the complicated API changes that have been recently intro-
duced. Developers can also protect concurrency in a natu-

ral way, reducing code complexity and potentially gaining
performance, e.g., eliminating lock files and allowing con-
current file updates instead of using a database. This paper
also shows that system transactions can be efficient with
preliminary data from TxOS, a prototype implementation
on the Linux kernel.

2 System Transactions
System transactions provide atomicity, consistency, isola-
tion, and durability (ACID) for system state. The only ap-
plication code change required to use system transactions
is to enclose the relevant code region within the appropri-
ate system calls: sys xbegin(), sys xabort(), and
sys xend(). Placing system calls within a transaction
changes the semantics of when and how their results are
published to the rest of the system. Outside of a transac-
tion, actions on system resources are visible as soon as the
relevant internal kernel locks are released. Within a trans-
action, all updates are kept isolated until commit, when
they are atomically published to the rest of the system.

2.1 Previous transactional operating systems

Locus [19] and QuickSilver [15] are historical systems that
provide some system support for transactions. Both sys-
tems implement transactions using database implementa-
tion techniques, namely isolating data structures with two-
phase locking and rolling back failed transactions with an
undo log. One problem with this locking scheme is that
simple reader-writer locks do not capture the semantics of
container objects, such as directories. Multiple transac-
tions can concurrently and safely create files in the same
directory so long as none of them use the same file name
and none of them read the directory. Unfortunately, creat-
ing a file in these historical systems requires a write lock on
the entire directory, which needlessly serializes operations
and eliminates concurrency. To compensate for the poor
performance of reader/writer locks, both systems allow
directory contents to change during a transaction, which
reintroduces the possibility of time-of-check-to-time-of-
use (TOCTTOU) race conditions that system transactions
ought to eliminate.

We propose a design for system transactions that pro-
vides stronger semantics than these historical systems and
helps address the problems of concurrent programming on
current and future generations of multi-core hardware.

2.2 Implementation sketch

The key goal of a system transaction implementation
should be to provide strong atomicity and isolation guar-
antees to transactions while retaining good performance.
This section outlines how our TxOS prototype achieves
these goals; a detailed design of our prototype is available
as a technical report [12].

TxOS implements a custom, object-based software
transactional memory system to checkpoint and rollback
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many kernel data structures, including objects that rep-
resent file system metadata or a process’s address space.
To isolate updates to kernel data structures, TxOS adopts
lazy version management [8], where transactions operate
on private copies of a data structure. Unlike traditional ap-
proaches that use two-phase locking, lazy versioning is a
good match for an OS because no kernel locks are held
when returning to the application from a transactional sys-
tem call. Lazy versioning also allows a high-priority or
real-time process to quickly abort a lower priority process,
as a non-transactional thread does not need to wait for the
transactional victim to walk its undo log.

TxOS leverages existing OS buffers to isolate data read
and written by a transaction. When an application writes
data to a file or device, the updates generally go into an OS
buffer first, allowing the OS to optimize device accesses.
By making these buffers copy-on-write for transactions,
TxOS isolates transactional data accesses until commit.

Buffering updates in memory during transactions lim-
its the size of transactions, and restricts the transactional
model. For instance, if an application writes a message to
the network, it will be buffered until commit and the appli-
cation cannot expect a response to the message within the
same transaction. Future work could examine using sec-
ondary storage to help buffer changes and extending trans-
actions over the network; this paper argues for a more ex-
pressive system call framework that can serve as the inter-
face for future enhancements.

2.3 Fairness

TxOS can schedule transactional and non-transactional
threads more fairly than historical transactional operating
systems. TxOS protects transactions from interference by
non-transactional system calls by having all threads use the
same locking discipline, and by having transactions anno-
tate accessed objects. When a thread, transactional or non-
transactional, accesses an object for the first time, it must
check for a conflicting annotation and have the scheduler
arbitrate the conflict. In many cases, this check is per-
formed at the same time a thread acquires a lock for the
object. When TxOS detects a conflict before a critical sec-
tion begins, the scheduler can safely suspend a conflicting
non-transactional thread or abort a transaction, giving the
scheduler substantial latitude to ensure fairness and prevent
starvation of tasks, whether transactional or not.

2.4 Durability

For system state to remain consistent across crashes, up-
dates from committed transactions must be durable—they
must reside on stable storage. Durability is only rele-
vant for some system resources, like file systems on non-
volatile storage. Providing durability often slows perfor-
mance because of the increased latency of stable storage,
so users should have the option of relaxing it when they do
not need it. For instance, eliminating the TOCTTOU race

described above does not require durable updates.
In the TxOS design, specific file system implementa-

tions are responsible only for not writing intermediate
transaction results to disk and atomically writing a group
of updates at commit. This atomic write could be im-
plemented with journaling, copy-on-write semantics, or a
transactional file system [11, 20]. Conflict detection and
object versioning occur in common code shared by all file
systems. Because the implementation of durability is the
most thoroughly studied in previous work, this paper fo-
cuses on other aspects of system transactions.

2.5 Transactions for system state

System transactions provide programmers with atomicity
and isolation for system state, as opposed to application
state. System state includes OS data structures and de-
vice state, whereas application state is stored in the ap-
plication’s data structures within its address space. When
using system transactions, the application must be able
to restore its pre-transaction state if a system transaction
aborts. Application state can be managed in several ways:
the application state might need no explicit management
(as in the TOCTTOU example), the OS can automatically
checkpoint and restore the application’s address space (as
in Speculator [10]), or the application can implement its
own checkpoint and recovery mechanism, perhaps using
hardware or software transactional memory.

2.6 Related work

The system transactions supported by TxOS solve a
fundamentally different problem from those solved by
TxLinux [14]. TxLinux is a Linux kernel that uses hard-
ware transactional memory as a synchronization technique
within the Linux kernel, whereas TxOS provides transac-
tions to programmers as part of the OS API on currently
available hardware. The techniques used to build TxLinux
support short critical regions that enforce consistency for
accessing memory: these techniques are insufficient to im-
plement TxOS, which must guarantee consistency across
heterogeneous system resources, and which must support
arbitrarily large transactions.

Speculator [10] applies an isolation and rollback mecha-
nism to the operating system that is similar to transactions.
This mechanism allows their system to speculate past high-
latency remote file system operations. Providing transac-
tional semantics to users is a more complicated endeavor,
as transactions must be isolated from each other, whereas
applications in Speculator share speculative results. If a
TOCTTOU attack were to occur under Speculator, the at-
tacker and victim would be part of the same speculation
and the attack would be successful. Speculator has been
extended to tasks including debugging system configura-
tion [17], but it does not provide a general-purpose inter-
face for users to delimit speculation, and is thus insufficient
for applications like atomic software installation.
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3 Applications for system transactions
This section examines several classes of applications
where open problems can be cleanly addressed by group-
ing system calls within transactions.

3.1 Isolation for concurrent performance

By providing a simple isolation primitive, system trans-
actions expose new opportunities for enhancing concur-
rent performance of computer systems. For instance, when
a system administrator performs a major distribution up-
grade with apt, a system will typically upgrade over a
thousand packages, requiring an hour of down time or
more. In many cases, packages update disjoint files with-
out ordering dependences, and are thus safe to install con-
currently. Because some packages cannot be installed con-
currently and safely, apt performs all installs sequentially.
This design harms common case performance because it
cannot easily guarantee correctness in the worst case.

Similarly, simple web applications often use relatively
heavyweight database management systems to provide
concurrency control for a small amount of application data,
leading to higher single-thread overheads as well as the
management complexity and security risks that come with
databases. Although databases perform an important role
in providing sophisticated queries and optimizing accesses
to very large data sets, system transactions can provide
a lightweight solution for applications with more modest
datasets and query requirements. System transactions al-
low an application to group multiple writes to a file while
shielding readers from seeing a file in an inconsistent state
during an update. That power is all many web applications
need.

System transactions also allow new ways of expressing
producer/consumer relationships, enhancing the usability
of systems. Consider a user who is downloading music
files that must be converted to a format supported by his
or her player. When the producer does not easily fit into
a UNIX-style pipeline (such as a GUI program), attempts
to overlap the conversion with the download creates irritat-
ing partially converted files. If the producer and consumer
ran in transactions designated as a producer and consumer
pair, the system could coordinate the transactions so that
the consumer serializes after the producer and waits for the
producer, if necessary. Ramadan et al. describe the safety
conditions for this sort of transaction coordination, called
dependence-awareness [13]. Dependence-aware transac-
tions improve usability by providing a simple way to coor-
dinate data producers and consumers that do not commu-
nicate through pipes or sockets.

3.2 Eliminating races for security

System-level race conditions threaten security because at-
tackers can change system state in between a check and a
modification. Although system-level races are most com-
monly presented in the context of the file system names-

pace, they also occur in OS subsystems other than the file
system. Zalewski demonstrates how races in signal han-
dlers can be used to crack applications, including sendmail,
screen, and wu-ftpd [21]. These races can be remedied by
the new sigaction API, which allows application de-
velopers to disable signals in a manner similar to OS de-
velopers disabling interrupts during critical regions. Trans-
actions provide a simpler alternative by serializing signal
delivery before or after system transactions.

Local sockets used for IPC are vulnerable to a sim-
ilar race between creation and connection. Versions of
OpenSSH before 1.2.17 suffered from a socket race ex-
ploit that allowed a user to steal another’s credentials [1],
and the Plash sandboxing system has a similar exploit [2].
To prevent this socket race with system transactions, the
transaction API must allow multiple processes to partici-
pate in a transaction.

Race conditions in a single file system can be addressed
with a transactional file system, such as TxF [11], and
Valor [16], but a transactional file system cannot address
race conditions for other system resources, such as network
sockets or signal handlers. Transactional file systems also
cannot address races that involve non-transactional file sys-
tems. Races in the creation of temporary files in privileged
programs provide a common attack vector [5]. Many Unix
distributions use a memory-only file system for /tmp. On
these distributions, temporary file creation is not protected
even if the root file system is transactional. We propose im-
plementing system transactions primarily at the VFS layer,
allowing the OS to isolate a series of operations that span
multiple, transactional and non-transactional file systems.

3.3 Transactional memory

With the exception of TxLinux, transactional memory sys-
tems are used to synchronize threads in user-level applica-
tions. An open problem for transactional memory is sup-
porting system calls within a transaction, because some
system calls can have effects that are difficult to undo
if a transaction must restart1. There have been a num-
ber of user-level approaches to this problem that lever-
age logical undo complements of some system calls (e.g.,
open/close). These proposals include open nesting [9],
escape actions [22], and xCalls [18].

There are two problems with user-level support for sys-
tem calls in transactional memory. First, system calls may
have side effects that are difficult to detect and rollback
(e.g., munmap may remove the last link to a file and delete
it). Second, most user-level techniques only isolate updates
to system resources from other threads in the same appli-
cation by using user-level locking. In order to be appro-
priate for tools that affect system state, such as a software
installer, transactions must isolate partial updates from all
processes on the system. System transactions provide a

1Isolation is also violated by exposing the effects to the rest of the
system immediately.

4



Bench Linux TxOS
lfs small create 4.5 5.5 1.2×

read 1.2 1.0 0.8×
delete 0.1 1.2 12.0×

lfs large write seq 1.38 0.34 0.2×
read seq 0.04 0.13 3.2×
write rnd 1.60 0.36 0.2×
read rnd 0.07 0.14 2.0×

Figure 2: Execution time in seconds for the LFS benchmarks
on TxOS and slowdown relative to Linux. The LFS small bench-
mark operates on 10,000 files of length 100 bytes, and the large
benchmark reads and writes a 100MB file.

comprehensive solution for system-wide updates, as sys-
tem transactions have access to internal OS data structures
and can isolate all of the side effects of a system call. Sim-
ilarly, system transactions can leverage OS scheduling and
synchronization to ensure system-wide isolation.

4 Transaction overhead
We evaluate the feasibility of system transactions by eval-
uating our TxOS prototype, derived from Linux 2.6.22.6.
All experiments are performed on a 4 core Intel X5355
processor running at 2.66GHz with 4 GB of RAM.

Figure 2 shows the performance of TxOS on the LFS
benchmarks. For workloads that run for more than one
second, the overhead of system transactions is under 20%.
The LFS large phases that repeatedly write files in a trans-
action are more efficient than Linux because transaction
commit groups the writes and presents them to the I/O
scheduler at once, improving disk arm scheduling. Write-
intensive workloads out-perform non-transactional writers
by as much as a factor of 5×.

4.1 Implementation complexity

System transactions in TxOS add roughly 8,600 lines of
code to the kernel and require about 14,000 lines of minor
changes to kernel code, such as replacing pointer deref-
erences with wrapper functions that detect conflicts. Al-
though adding system transactions increases the imple-
mentation complexity of the operating system, overall sys-
tem code complexity can be reduced because many appli-
cations can eliminate the ad hoc code currently needed to
approximate atomic accesses to system resources.

Scaling the performance of current systems with in-
creasing core counts requires substantial implementation
effort. High-performance concurrent programming is dif-
ficult and requires more pervasive changes than most sys-
tems research proposals of the previous decade. For in-
stance, Corey [4] addresses a number of scaling prob-
lems in Linux by redesigning and reimplementing OS data
structures and user APIs. Similary, substantial engineer-
ing effort is required to implement system transactions,
but transactions can help programmers write performance
scalable programs. Given how few tools programmers

have for writing concurrent applications in the multi-core
era, the value of a useful abstraction justifies a challenging
implementation.

5 Summary
Adding efficient transactions to the Linux system call API
provides a natural way for programmers to synchronize ac-
cess to system resources, a problem currently solved in an
ad hoc manner. This paper argues that system transactions
elegantly solve a number of important, long-standing prob-
lems ranging from system security to performance scala-
bility.
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