
If It Ain’t Broke, Don’t Fix It:
Challenges and New Directions for Inferring the Impact of Software Patches

Jon Oberheide, Evan Cooke, Farnam Jahanian
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{jonojono, emcooke, farnam}@umich.edu

Abstract
Software patches are designed to have a positive ef-

fect on the operation of software systems. However,
these patches may cause incompatibilities, regressions,
and other unintended negative impact on the reliability,
performance, and security of software. In this paper,
we propose PatchAdvisor, a technique to improve the
manageability of the patching process for administrators
by automatically inferring the impact of a patch or up-
grade. PatchAdvisor inspects a software system and its
patch using a combination of static control flow analy-
sis, dynamic execution traces, and ranking heuristics to
automatically infer the potential impact of the patch. To
evaluate the feasibility of our approach, we implement
an initial prototype of PatchAdvisor using the IDA and
PaiMei frameworks and demonstrate its effectiveness on
a real-world web application stack. Finally, we discuss
the challenges and future research directions in this prob-
lem domain.

1 Introduction

Modern software systems are complex. These systems
consist of many components and layers that interact with
and depend on each other. Rich web application stacks,
custom in-house enterprise applications, and commercial
off-the-shelf software are commonplace, yet are often of
considerable complexity. Due to their complexity, these
software systems frequently require patching and updat-
ing to fix bugs, patch security vulnerabilities, add func-
tionality, or increase performance.

For example, we surveyed several Gentoo Linux ma-
chines used for various purposes in our research group:
a workstation, a server used for data processing and re-
search experiments, and a server used to host simple web
content and revision control. Each host had 923, 655, and
192 software packages installed respectively for a total
of 1453 unique packages. Of those 1453 packages, there

were 2402 upstream updates to those packages during
the 2008 calendar year.

While patches are intended to have a positive impact
on the operation of a software component, such upgrades
are not without risk, and updates can have unwanted
consequences. The number of potential interactions be-
tween the various components, which are often devel-
oped and updated independent of each other, of a soft-
ware system of any considerable scale is enormous. Mis-
placed assumptions between the operation of these com-
ponents may lead to bugs, incompatibilities, regressions,
and other unintended negative effects on the reliability,
performance, and security of the software system.

As downtime and failures can have significant oper-
ational and financial impact in modern systems, these
patches must be applied with caution and prudence. Tra-
ditionally, the adage often repeated in the domain of soft-
ware reliability is: “If it ain’t broke, don’t fix it”. That
is, upgrades and patches are often unnecessary and un-
wise if the software appears to be functioning correctly.
However, blindly ignoring important patches may be an
unwise policy as well. In the real world, it is often the
task of a system’s administrator to manage and the gauge
the risk involved in upgrading a particular software com-
ponent. While existing approaches, such as test suites,
may assist an administrator, we believe that significant
advancements are possible that improve the manageabil-
ity of the patching process, which thereby can positively
influence factors such as reliability, security, and surviv-
ability [3].

We propose an approach, called PatchAdvisor, whose
goal is to automatically infer the impact that a patch will
have on a software system. This information can be of
great value to administrators in charge of software up-
grades, allowing them to make more informed decisions
during the patch process. Our approach is based on the
simple observation that patching an area of the software’s
code that is frequently used during execution is likely to
have a greater impact, whether positive or negative, on



Impact
Report

CFG Overlay

Program

Patch

Traces

CFG

Execution
Tracing

Static
Analysis

Impact
Ranking
Functions

Figure 1: An overview of the PatchAdvisor architecture.

the operation of the software. PatchAdvisor combines
static analysis of the candidate software and associated
patch, dynamic execution tracing of the software in its
normal operating environment, and heuristic functions to
automatically infer the potential impact of the patch.

We present the PatchAdvisor approach, describe our
prototype implementation built using the IDA [9] and
PaiMei [13] frameworks, and perform an evaluation us-
ing a real-world web application. Beyond our initial in-
vestigation, we believe there is much progress to be made
in this research area and discuss several of the challeng-
ing problems worthy of further investigation.

2 Existing Approaches

Maximizing the positive benefits of an upgrade or patch
while minimizing the risk of adverse affects is a difficult
problem. However, there are existing approaches that
may assist in lessening the difficulty for an administrator.
One popular approach currently employed by adminis-
trators is the use of test suites. For example, before de-
ploying an upgraded version of a software component, an
administrator can run test cases against the new version
to ensure that the test case output matches the expected
results. While the use of test suites is a valuable tool in
the administrator’s toolbox when dealing with the testing
and deployment of patched or upgraded software, main-
taining comprehensive test suites can be expensive and
the resulting code coverage of test cases may be inade-
quate [1]. We feel that PatchAdvisor is complimentary to
existing software test suites and can provide valuable in-
sight in cases where testing coverage may be inadequate
or even non-existent.

Automated testing frameworks [2, 4, 5, 7, 10, 12] and
formal model checking [6, 8, 11] have also been ap-
plied to increase testing capabilities and software relia-
bility. While these approaches can be effective in their
specific goals, many focus on the discovery and elimina-
tion of bugs in software packages. Instead, we assume
that these bugs will exist in real-world software despite
these existing tools and therefore patching must be done

with caution and managed in an efficient and effective
manner to avoid negatively impacting software reliabil-
ity. PatchAdvisor stresses a practical approach to im-
prove manageability of the patching process. While our
approach currently focuses on patches to software code,
interesting research has been done in the area of config-
uration management as well [14].

3 The PatchAdvisor Approach

The primary goal of the PatchAdvisor approach is to de-
termine if the changes made by a patch affect areas of
the software that are important to its operation in a real
deployment. There is an inherent tension between in-
creased risk of adverse negative effects on the software
when choosing to upgrade and the forfeiture of the poten-
tial positive effects provided by a patch when choosing
not to upgrade.

Our approach is based on the simple observation that
patching an area of code that is frequently used during
execution is likely to have a greater impact, whether pos-
itive or negative, on the operation of the software. On one
extreme, patching areas of the software that are not exer-
cised during execution may have little value if it doesn’t
improve the software’s operation, but also has little risk
of adverse impact. On the other extreme, patching ar-
eas that are core to the software’s functionality and heav-
ily used during execution may have positive benefits, but
also present a much greater risk of adverse impact. In
between these extremes, there are many cases where the
potential risks and potential benefits have unique trade-
offs. The PatchAdvisor approach aims to strike a balance
of trade-offs and allow an administrator to maximize the
positive benefits of a patch while minimizing the risk of
adverse affects.

In order to determine the areas of an application modi-
fied by a patch, the actual areas of code that are executed
during the software’s normal operation, and the impact
that the patch will have, PatchAdvisor employs a com-
bination of static analysis techniques and dynamic exe-
cution tracing. Our approach consists of three distinct



1

2
10

9 1

9 1
0

Naive
Binary:

Proximity
Ranking:

Trace
Weighted:

Y

Figure 2: Several examples of our proposed patch impact ranking functions. The red areas represent the modifications
of the CFG by the patch and the green lines represent the overlaid execution traces.

stages: (1) a preprocessing stage where the control flow
graphs (CFGs) for the software package (both before and
after the patch) are generated and compared with each
other to identify modified control flow; (2) execution
tracing of the application and overlay of the execution
traces on the CFG; and (3) the analysis stage where rank-
ing and heuristic functions are applied to infer the impact
of the patch. An overview of this approach is pictured in
Figure 1. Each of these stages is discussed in further de-
tail in the following subsections.

3.1 CFG Preprocessing

The first stage is generating control flow graphs (CFGs)
of the candidate application via static analysis of the ap-
plication’s source code or binary machine code. First,
the CFG of the pre-patch version of the application is
generated. The patch is then applied to the application
and the CFG generation is re-run on the post-patch ver-
sion of the application. Lastly, the resulting pre-patch
and post-patch CFGs are compared to determine what
basic blocks of the software were modified by the patch.

3.2 Dynamic Tracing and CFG Overlay

The second stage of PatchAdvisor traces the execution
of the candidate application in its normal operating en-
vironment in order to get a sense of the execution paths
that are exercised. By monitoring branches and jumps in
control flow during execution of the application, traces
of the execution paths are collected. These collected ex-
ecution traces are then overlaid on the generated CFGs.

As constant tracing may impose an undesirable per-
formance penalty, execution traces may be collected by
sampling periodically depending on needs of the admin-
istrator and the deployment environment. Like a debug-
ger, PatchAdvisor can attach to a process to collect an
execution trace and then detach, allowing the process to
continue running uninterrupted at native speed.

3.3 Impact Analysis and Report
The last stage is responsible for applying functions and
heuristics to the modified CFGs overlaid with the exe-
cution traces. By determining how the CFG changes in-
teract with the paths of real execution, PatchAdvisor can
use these functions to infer how much impact the patch
will have on the real-world operation of the software.
We briefly describe several of these potential functions,
which are also pictured in Figure 2, that can be used to
infer patch impact:

• Naive Binary: A binary yes/no function can be
used to simply say whether or not an execution trace
intersects with a portion of the CFG that is modified
by the patch.

• Trace Weighted: Instead of a simple binary result,
the impact of a patch may be ranked by weighting
the edges of the CFGs based on how many recorded
execution paths traversed that edge. For exam-
ple, a patch that modifies a core area of a program
will likely have numerous execution traces that pass
through that core area, resulting in a larger weight
and larger risk of adverse impact.

• Proximity Ranking: While an execution path may
not directly pass through an area of the CFG modi-
fied by a patch, it may modify a nearby area. Chang-
ing areas of the CFG that are “close” to captured
execution traces are arguably more likely to cause
an impact on some uncaptured execution trace than
areas that are “far” from any traces. The proxim-
ity heuristic measures the distance (or number of
jumps/branches) from the modified CFG area to the
execution trace.

Based on the output of these functions, a patch im-
pact report can be generated and presented to the admin-
istrator. The impact report can vary based on the func-
tions used to perform the impact analysis as well as the
needs and skills of the administrator. For example, if
the trace weighted function is used, the total weight of
patch-affected areas can be normalized against the traces



of non-affected areas and assigned an impact score on
a human-understandable scale of 1-10 (with 10 being a
high impact and 1 being a low impact). Previous up-
grades and failures of the particular software package can
also be taken into account when determining the score
to assign. If an administrator is knowledgeable about
the operation of the application and desires more infor-
mation, an impact report can provide details on func-
tions affected, the set of inputs that reach affected areas,
and other operational specifics. With more sophisticated
analysis, the report may be able to infer why areas of
code were changed and what semantic affect it has on the
operation of the application. Such sophisticated analysis
is explored further in Section 5.

It is important to note that the integration and de-
velopment of more sophisticated heuristics into the
PatchAdvisor system is a simple process. We envision
a hybrid impact function that is composed of several
heuristics to generate a final impact report.

4 Implementation and Evaluation

In this section, we describe our initial research proto-
type implementation of the PatchAdvisor system. We
also perform a simple evaluation of its effectiveness in
a scenario involving a real-world web application stack.

4.1 Prototype Implementation
We implement our PatchAdvisor prototype on top of the
IDA [9] and PaiMei [13] frameworks. IDA is a disas-
sembler and debugger most commonly used in malware
analysis and vulnerability research. However, due to its
rich functionality and ability to be extended and scripted,
the IDA framework is well-suited for a wide range of
tasks. IDA’s binary disassembler functionality also al-
low us to apply our PatchAdvisor system to cases where
the source code may not be available for the application
being patched. PaiMei is a reverse engineering frame-
work offering abstractions that allow powerful reverse
code engineering (RCE) tools to be developed on top of
IDA. The rapid development and extensibility offered by
these frameworks allows to us to determine the feasibil-
ity of our approach in an efficient manner.

Our prototype implementation consists of three pri-
mary components. The first leverages core functionality
of IDA to generate control flow graphs for the candidate
application and a modified version of PaiMeidiff tool to
determine differences between the pre-patch and post-
patch versions of the application. The second compo-
nent, which records execution traces from live runs of the
application by tracking branches and jumps in the run-
time control flow, is implemented as a Python application
that interfaces through the PaiMei framework. Lastly,

the third component determines the intersection of the
execution traces with the modified areas of the patched
software and implements the impact ranking functions.
While our implementation is not yet fully automated in
its prototype form (for example, it takes the pre-patch
and post-patch binaries as input instead of automating
the patch application and compilation process), it is suf-
ficient to demonstrate our approach.

4.2 Preliminary Evaluation

For our evaluation, we demonstrate the PatchAdvisor
system using a popular web application stack. Web ap-
plications tend to be interesting to investigate as they
commonly rely on a number of layers of functionality
(e.g., the OS, HTTP server, script interpreter, database
layer). While these layers are designed to operate inde-
pendent of each other, small changes at any layer can
often have a significant impact on the entire application.

We performed our experiments on a TurboGears de-
ployment, a popular Python-based web framework. In
particular, we employed the SQLObject database layer
which communicates with the backend PostgreSQL
database using the Psycopg2 library. To test our
PatchAdvisor implementation, we analyzed a particular
upgrade available for the Psycopg2 library. The upgrade
from Psycopg2 2.0.2 to 2.0.3 seemed like a simple up-
grade. It was only a revision number version increment
and there were a handful of entries in the ChangeLog.
However, in one of the bug fixes included in 2.0.3, a
programmer mistake caused a NULL pointer derefer-
ence to occur in a fairly common code path. In par-
ticular, the NULL dereference was introduced into the
typecast FLOAT cast function which converts Post-
greSQL FLOAT-typed values from a database query re-
sult into a Python float type. Version 2.0.2 of the
typecast FLOAT cast function had a total size of 136
bytes made up of 6 basic blocks and 46 instructions while
the version in 2.0.3 had a total size of 107 bytes made up
of 3 basic blocks and 38 instructions.

As our web application made use of the PostgreSQL
FLOAT type in several columns of the database schema
and was accessed in common SQL SELECT statements,
the control flow of the program frequently exercised the
area of the code modified by the patch. The warnings
provided by PatchAdvisor may have prompted an admin-
istrator to be more cautious upgrading a hot code path,
take a second look at the upgrade, or at least do further
testing on the application inputs that intersect with the
modified portions of the software. Interestingly enough,
the Psycopg2 library does ship with a built-in test suite,
but the test cases did not have sufficient coverage to ex-
pose this bug before the software was released.



5 Research Directions and Challenges

While our prototype PatchAdvisor implementation can
provide useful information regarding the impact of soft-
ware patches, we believe that there is still much progress
that can be made. This area of research presents addi-
tional difficult, yet interesting and relevant, problems that
are worthy of further investigation:

• Improved Ranking and Heuristics: While our ini-
tial work has presented several ranking and heuris-
tic functions to determine patch impact, we plan to
develop a more sophisticated engine to improve our
results. Investigation into additional real-world fail-
ures will allow us to tune our engine to more appro-
priately to match practical considerations.

• Application-Specific Knowledge: Using knowl-
edge specific to a specific application, a class of ap-
plications, or a particular deployment model may
assist in patch analysis. For example, web applica-
tions often have well-defined request-response ac-
cess patterns that may be leveraged to better under-
stand the structure and execution of the application
and the effect of a patch.

• Patch Classification: It may be possible to auto-
matically classify whether a particular patch is in-
tended to address performance issues, fix semantic
application bugs, close security holes, or simply im-
plement new functionality. For example, adminis-
trators may wish to only apply security fixes while
avoiding new functionality which may not be a na-
tive option with some software products.

• Patch Splicing: Being able to selectively splice out
and apply individual changes from a composite up-
grade or from revision control repositories while
ignoring others may be useful to an administrator
who wishes to include low risk patches yet avoid
high risk ones. Determining individual dependen-
cies within a composite patch is a challenging prob-
lem, especially if source code is not available.

• Hands-Free Upgrades: Automatically and accu-
rately analyzing patches so that no human operator
intervention is necessary to perform optimal soft-
ware upgrades is the holy grail of this problem do-
main. While this is a lofty goal that is likely impos-
sible to achieve in practice, we can certainly strive
towards this goal and provide deeper and more ac-
tionable information to assist administrators.

6 Conclusions

In this paper, we have proposed a novel approach to
analyze software patches and infer their potential im-
pact on the reliability, performance, and security of soft-
ware. Providing such information to administrators al-
lows for more intelligent and informed decisions to be
made during the patch management process. Our pro-
posed system, PatchAdvisor, combines static analysis of
the candidate software and patch, dynamic tracing of
real execution paths, and ranking heuristics to automat-
ically infer patch impact. While our initial prototype
of PatchAdvisor shows promise in real-world examples,
much more sophisticated analysis is possible to signifi-
cantly improve its results. We believe the research area
of patch analysis presents many interesting and difficult
problems worthy of further investigation in the future.

References
[1] A. Bertolino. Software Testing Research: Achievements, Chal-

lenges, Dreams. In International Conference on Software En-
gineering, pages 85–103. IEEE Computer Society Washington,
DC, USA, 2007.

[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Auto-
matic Generation of High-Coverage Tests for Complex Systems
Programs. In Proceedings of the 8th USENIX Symposium on Op-
erating Systems Design and Implementation, December 2008.

[3] George Candea. Towards Quantifying System Manageability. In
Proceedings of the 4th Workshop on Hot Topics in System De-
pendability, December 2008.

[4] C. Csallner and Y. Smaragdakis. DSD-Crasher: a hybrid anal-
ysis tool for bug finding. In Proceedings of the 2006 interna-
tional symposium on Software testing and analysis, pages 245–
254. ACM New York, NY, USA, 2006.

[5] S.H. Edwards. A framework for practical, automated black-box
testing of component-based software. Software Testing, Verifica-
tion & Reliability, 11(2):97–111, 2001.

[6] P. Godefroid. Compositional dynamic test generation. In Pro-
ceedings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 47–54, 2007.

[7] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Di-
rected automated random testing. In ACM SIGPLAN 2005 Con-
ference on Programming Language Design and Implementation
(PLDI’05), pages 213–223, 2005.

[8] A. Groce, G. Holzmann, and R. Joshi. Randomized Differen-
tial Testing as a Prelude to Formal Verification. In Software En-
gineering, 2007. ICSE 2007. 29th International Conference on,
pages 621–631, 2007.

[9] Hex-Rays SA. IDA Pro Disassembler. http://www.hex-rays.
com/idapro/, 2008.

[10] R. Majumdar and K. Sen. Hybrid Concolic Testing. In Proceed-
ings of the 29th International Conference on Software Engineer-
ing, pages 416–426. IEEE Computer Society Washington, DC,
USA, 2007.

[11] L. Mariani and M. Pezzè. A Technique for Verifying Component-
Based Software. Electronic Notes in Theoretical Computer Sci-
ence, 116(1):17–30, 2005.

[12] C. Pacheco, S.K. Lahiri, M.D. Ernst, and T. Ball. Feedback-
Directed Random Test Generation. In Proceedings of the 29th
International Conference on Software Engineering, pages 75–84.
IEEE Computer Society Washington, DC, USA, 2007.

[13] Pedram Amini. PaiMei. http://pedram.redhive.com/
PaiMei/, 2007.

[14] Y.Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving con-
figuration management with operating system causality analysis.
In ACM SIGOPS, pages 237–250, 2007.


