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Abstract
Heterogeneous multi-core processors, such as the Cell

processor, can deliver exceptional performance, however,
they are notoriously difficult to program effectively. We
present Hera-JVM, a runtime system which hides a pro-
cessor’s heterogeneity behind a homogeneous virtual ma-
chine interface. Preliminary results of three benchmarks
running under Hera-JVM are presented. These results
suggest a set of application behaviour characteristics that
the runtime system should take into account when placing
threads on different core types.

1 Introduction
Multi-core CPU architectures have become prevalent in
recent years. Whilst most multi-core architectures are
symmetric, a number of recent architectures incorporate
different types of processing cores onto a single CPU.
Chips such as the Cell processor [7] and the IXP network
processor [1] employ this approach, with multiple small
cores, specialised for a particular function, alongside a
general purpose core for control and operating system
support. Whilst theseHeterogeneous Multi-core Archi-
tectures (HMAs) can deliver increased performance, com-
pared to a typical symmetric multi-core architecture [4],
it is notoriously difficult to exploit their potential perfor-
mance in all but the most specialised applications.

This trend towards heterogeneity of processing cores is
likely to increase in coming years, and move out of spe-
cialist niche markets. This will be driven by the ability
to write general purpose software for Graphics Proces-
sors (GPUs) using frameworks such as CUDA [8], the
emergence of GPUs based upon CPU cores (e.g. In-
tel Larrabee) and the promise of integrating CPUs and
GPUs on a single chip (e.g. AMD Fusion). These inte-
grated GPU/CPU chips will have similar characteristics
to current HMAs, such as the IBM Cell processor, with a
set of high performance processors specialised for float-
ing point and data-parallel operations (the GPU) and the
more typical control CPU. If these architectures are to
be exploited by non-specialist programmers, a program-
ming model must be developed which abstracts the diffi-
culties involved in programming these HMAs, whilst still
enabling their potential performance to be exploited.

We present Hera-JVM, a Java Virtual Machine de-
signed to alleviate many of the difficulties involved in

developing applications for HMAs. Our approach is to
completely hide the architecture’s heterogeneity from the
developer, while allowing the developer to specifyhints
about the program’s behaviour using code annotations.
Hera-JVM abstracts the heterogeneity of the architec-
ture by presenting the illusion of a homogeneous, multi-
threaded virtual machine. The runtime system transpar-
ently maps application threads to the underlying hetero-
geneous core types, using information about each thread’s
behaviour (either through code annotations or runtime
monitoring) and each core type’s capabilities, to inform
its thread placement decisions.

We have created an implementation of Hera-JVM for
the Cell processor. This paper describes the challenges
involved in designing a runtime system which runs con-
currently on the two different core types available on the
Cell processor. The Cell processor has an unusual mem-
ory architecture, in that one of the core types does not
have direct access to main memory, nor a hardware cache
capability. Given this constraint, we describe the provi-
sion of a relatively efficient uniform view of memory for
threads running on different cores. The results of run-
ning three Java benchmarks on Hera-JVM are presented.
These three benchmarks have very different characteris-
tics and thus enable a preliminary analysis of the capabil-
ities of each processing core type.

2 The Cell Processor
The Cell processor was developed primarily for multi-
media applications, specifically the game market, where
it is the main processor used by the Sony Playstation 3. It
is also being actively employed in a variety of other areas,
such as scientific and high performance computing and in
media workloads such as video decoding.

The Cell processor consists of a single PowerPC core
(PPE) and eightSynergistic Processing Engine (SPE)
cores (Figure 1). The PPE is intended to manage the
system overall and co-ordinate the SPEs. As a PowerPC
based core, it can support the Linux operating system and
run any applications compiled for the PowerPC. The SPEs
are designed to perform the bulk of the computation on
the Cell processor. They have a unique instruction-set,
highly tuned for floating point, data-parallel workloads.
The SPEs do not run any operating system code, relying
on the PPE to perform operations such as page table up-
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Figure 1: Cell Processor Architecture.

dates or file I/O.
Unlike the PPE, the SPE cores do not have transparent

hardware caches for accessing main memory; each SPE
contains 256KB of non-coherent local memory. The pro-
cessing elements can access only this local memory di-
rectly. To read from or write to main memory an SPE
must initiate a DMA (Direct Memory Access) transfer be-
tween main memory and its local memory using an asso-
ciated Memory Flow Controller. By offloading memory
reads and writes, large block transfers can be performed
very efficiently; however, small transfers are much less ef-
ficient due to the overhead involved in setting up a DMA
transfer. This approach suits the intended target applica-
tions of the Cell processor - large blocks of data (e.g. im-
age fragments) being loaded, processed and then streamed
out to main memory. However, it is much less suited to
general purpose computation where memory is seldom
accessed in large chunksand developers expect threads
on different cores to share a coherent view of memory.

3 Hera-JVM

Hera-JVM is a Java Virtual Machine (JVM) runtime sys-
tem that enables the non-specialist programmer to exploit
heterogeneous cores on an HMA processor, without re-
quiring intimate knowledge of the processor’s design. Un-
modified, multithreaded Java applications can be run on
Hera-JVM, with threads being transparently migrated be-
tween the core types on the HMA. Currently, Hera-JVM
runs on the Cell Processor, supporting execution of Java
threads on both the PPE and SPE cores.

To exploit a HMA effectively, the different portions of
an application must be run on the core type which they
would most benefit from. Rather than require the de-
veloper to partition an application for a particular HMA,
our approach is to provide the developer with a set of an-
notations that can enhance an application with platform-
neutral hints of its expected behaviour. These hints,
alongside runtime monitoring, inform Hera-JVM’s thread
placement and migration decisions. At present, this set
of annotations is minimal, however, it is envisioned that
these annotations will describe the behaviour of portions
of code, such as tagging floating-point intensive code. On
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Figure 2: Much of Hera-JVMs runtime can be shared
by both cores, given its Java in Java design.

encountering an annotation, the runtime system infers the
best course of action (e.g. migration to a different core
type) based upon its knowledge of the capabilities of the
different core types and their current workloads. We in-
tend to use the results presented in Section 4 to infer likely
candidates for such annotations and deduce appropriate
runtime responses to them.

3.1 Two Architectures, One JVM
Hera-JVM is based on the JikesRVM [2], a Java in Java
research virtual machine. JikesRVM is a fully capable
JVM with performance comparable to production JVMs.
A major advantage of using JikesRVM is that it supports
the PowerPC architecture, and can thus run on the PPE
core of the Cell without modification. This section details
the modifications necessary to support execution of Java
applications on both the PPE and SPE cores.

JikesRVM (and thus Hera-JVM) is a non-interpreting
JVM, with Java methods compiled to machine code be-
fore being executed. Since the SPE core has a different
instruction-set to the PPE core, a Java bytecode to SPE
machine code compiler is required to support the SPE
cores. As a Java in Java virtual machine, almost all of the
JikesRVM runtime system is written in Java. Thus, once
the SPE compiler, and a small portion (∼3KB) of sup-
porting low-level assembly code is built, the rest of the
runtime system (e.g. object allocation, file handling or
thread scheduling) essentially comes for free (Figure 2).

Other than the subset of the runtime system meth-
ods which are pre-compiled into the boot-image, all Java
methods are compiledjust in time. Thus, a method will
only be compiled for a particular core architecture if it
is to be executed by a thread running on that core type.
Since it is expected that most applications will exhibit a
partitioning between code which is best run on the PPE
or the SPEs, most methods will only ever be compiled for
one of the two core architectures. Thus, the compilation
overhead (both in time and memory requirements) of run-
ning an application on the two core architectures should
be little more than running on a single architecture.

Hera-JVM supports transparent migration of Java
threads between the PPE and SPE cores. Migration occurs
when invoking a method which has either been tagged by
an annotation or selected by the scheduler. If required,



this method is JITed for the core type to which the thread
is migrating (the method is not compiled for the core type
the thread is migrating from unless it is run from that core
type at a different point of execution). The parameters of
the method are packaged and a marker is placed on the
stack to signal this as a migration point. The thread is
then placed on the ready-queue of the core to which it is
being migrated, and will subsequently be scheduled by
that core. The thread executes on this new core until, ei-
ther it elects to migrate back, or returns to the migration
marker placed on the stack.

3.2 Java on the SPE Cores
Supporting execution of Java threads on the SPE cores
presents a number of challenges, not found in more typi-
cal architectures. One of the main difficulties involves the
limitation of having no direct access to main memory. In-
stead, data must be DMAed to and from the 256KB local
memory available to each SPE. Therefore, a form of soft-
ware caching had to be developed for both objects and
methods. These caching systems are presented in Sec-
tions 3.2.1 and 3.2.2, respectively.

Another issue is the lack of OS support on the SPEs.
Section 3.2.3 details how methods which require OS sup-
port, such as file access, are handled on the SPE core.

3.2.1 Data Caching
Setting up a DMA operation to transfer data to and from
local memory is an expensive operation (about 30-50 cy-
cles, not including the data transfer itself). Therefore,
an early design decision of the software cache was to
transfer large blocks of memory wherever possible. This
approach is enhanced by the high-level information still
present in Java bytecodes. For example, an instance ob-
ject will only be accessed from a given set of bytecodes
(e.g. getField), and arrays with another set of byte-
codes (aaload, etc.). The software cache can therefore
specialise the access of different data types. When an ob-
ject is accessed for the first time, the software cache trans-
fers the entire object to local memory (type information in
the bytecode is used to discover its size), on the assump-
tion that it is likely that other fields in that object will be
accessed. When an array element is accessed, a block of
up to 1KB of neighbouring elements is also transferred,
since they are likely to be accessed shortly.

This caching system means that cached elements are
not equally sized, so space must be allocated as elements
are cached. A simple bump-pointer scheme is used to
manage allocation, with the cache simply being flushed
if it is filled. A cache look-up involves hashing the ob-
ject’s address to index into a small, local-memory resident
hashtable. If the object is cached, this hashtable entry will
point to the local memory copy of the object. This simple
strategy seems to work well; future work will investigate
if more sophisticated strategies can improve performance.
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Figure 3: The code cache data structures.

In a multi-threaded application, the same object may be
accessed by multiple threads. This software caching sys-
tem does not support cache coherency, thus a thread run-
ning on an SPE core may not see new modifications made
to an object which has been previously cached, leading
to potential race conditions. In Hera-JVM, we prevent
this by purging the cache before a lock or volatile field
read operation and flushing any local modifications made
to cached objects before an unlock or volatile field write
operation. The Java Memory Model [5] allows caching
of values between lock and unlock operations. There-
fore, this caching scheme conforms to the Java Memory
Model and any correctly synchronised multi-threaded ap-
plication will run correctly under Hera-JVM.

3.2.2 Code Caching
Code must also reside on the SPE’s local memory before
it can be executed. Therefore, software caching of code is
required on the SPE cores. In keeping with the approach
of DMAing large blocks of data wherever possible, Java
methods are cached in their entirety. As with the object
cache, a bump pointer allocation scheme is used to man-
age this cache, with the cache being completely purged
whenever it becomes full.

Unlike the object cache, this code cache does not use a
hashtable to perform look-ups (to avoid costly hash colli-
sions, and to enable virtual method invocation). Instead,
each class has an associatedtype information block (TIB),
which contains a pointer to the SPE code for each method
declared by that class. These TIBs are themselves only
cached in local memory when required (exploitingclass
locality). The only data-structure which permanently re-
sides in local memory is a 2KB classtable of contents
(TOC), with an entry for each resolved class, pointing to
the class’s TIB. When a method is invoked, the appro-
priate class’s TOC entry is read to locate the class’s TIB.
This TIB is cached, if necessary, and the method’s entry
is read to locate the method’s code. Finally, the method is
cached, if necessary, then invoked (Figure 3). This pro-
cess is repeated on returning from a method, since the
callee method may have been purged from the cache in the
meantime. This process involves a double de-reference to
find a method’s location, however, in the case of a cache
hit, both pointers are in the low latency (3-6 cycles) local
memory, so the overhead is minimal.

The support for code caching resides in a block of in-
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Figure 4: (a) SPE / PPE performance (b) Scalability

structions permanently held in local memory, along with
low level assembly code to support SPE initialisation, ob-
ject caching and a first level interrupt handler. Since the
rest of the Hera-JVM runtime system is written in Java,
it can be loaded as required by this caching mechanism.
Thus, there is no need to specialise the SPE runtime, such
that it can entirely fit in the 256KB local memory, unlike
the approach taken by CellVM [6].

3.2.3 Native Method Support
Occasionally, a method in the runtime system, Java Li-
brary or a Java application requires access to native
code (e.g. to write to a file or start an external pro-
cess). JikesRVM/Hera-JVM provides this support with
JNI (Java Native Interface) for Java Library and Java ap-
plications, whilst methods in the runtime system can use
a fast system call mechanism.

However, if a thread is running on a SPE core, there is
no underlying OS to support native methods. SPE cores
must rely on the PPE core to perform native methods. In
the case of a JNI method, the thread is migrated to the PPE
core for the duration of the native method. For fast syscall
methods, the SPE core signals a dedicated thread on the
PPE core with an appropriate message. This dedicated
thread performs the required syscall on the SPE thread’s
behalf, then signals the SPE with the result.

4 Preliminary Results
We present results for three applications running on
Hera-JVM. Two applications (compress andmpegaudio)
are unmodified, multi-threaded benchmarks taken from
SPECjvm 2008. The other (mandelbrot) calculates the
mandelbrot set for an 800x600 pixel image. All experi-
ments use the baseline (non-optimising) compiler for both
PPE and SPE code. Hera-JVM is configured with a mark-
and-sweep, stop-the-world garbage collector, which only
runs on the PPE core. These experiments were performed
on a Playstation 3 running Fedora 8 Linux.

Figure 4(a) shows the performance of each benchmark
when run on one or six SPE cores, relative to the PPE
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Figure 5: Proportion of cycles per operation type.

core. A large disparity between PPE and SPE perfor-
mance is observed. When running on a single SPE core,
compress runs much slower than on the PPE core,man-
delbrot runs significantly faster andmpegaudio is roughly
equivalent. However, there are 6 SPE cores available on
the PS3’s Cell processor and only one PPE core. When
using all 6 SPE cores, the speedup compared to the PPE
core is about 2.5x forcompress, 4.6x formpegaudio and
9.4x formandelbrot. Figure 4(b) shows the scalability of
each benchmarks when run on multiple SPE cores, rela-
tive to a single SPE core.

To ascertain the most important program characteris-
tics that Hera-JVM should consider when making thread
and data placement decisions, we investigated the reasons
behind benchmarks running better on one core type than
another. Using a simulator we calculated the proportion
of processor cycles spent executing different operations
when the benchmarks were running on the SPE cores
(Figure 5). Themandelbrot benchmark performs sig-
nificantly more floating point calculations than the other
benchmarks. Given the SPE core’s strong floating point
performance, this goes some way to explainingmandel-
brot’s superior performance on the SPE core. It is also
noticeable thatcompress spends more of its execution ac-
cessing main memory than the other benchmarks, likely
leading to its poor performance on the SPE.

This motivated an investigation into the effectiveness
of the software caches on the SPE core. Figures 6 and 7
show the effect of reducing the data and code caches on
hit-rate and performance. Thecompress benchmark has a
consistently lower data hit-rate than the other benchmarks
and responds very poorly to a reduction in the data-cache
size. On the other hand,mpegaudio is relatively insensi-
tive to data-cache size, but is very susceptible to a reduc-
tion in the code-cache. These results show the importance
of effective caching on the SPE architecture, and suggests
that adaptive sizing of the code and data caches would
likely benefit many applications.

5 Related Work
The approach of hiding the Cell processor’s heterogene-
ity behind a Java virtual machine is also employed by
CellVM [6]. CellVM supports execution of unmodified
Java applications on both Cell core types, however, a sin-
gle thread is bound to each SPE core, thus threads cannot
be migrated transparently as in Hera-JVM. CellVM also
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Figure 6: Changing the size of the data cache.

relies on the PPE core to perform thread synchronisation
operations and the current prototype does not strictly fol-
low the Java memory model. These limitations present
scalability and correctness issues.

An alternative approach is taken by the BarrelFish Op-
erating System [10]. Rather than abstracting the proces-
sor’s heterogeneity, BarrelFish exposes this information
to applications and provides mechanisms for them to deal
with it. This is effectively the reverse of Hera-JVM’s ap-
proach, where the applications expose information about
their expected behaviour to the runtime system. It will
be interesting to see how these different approaches affect
performance and usability.

Other work has investigated different aspects of proces-
sor heterogeneity, most notably OS support for NUMA
(non-uniform memory access) architectures [3]. Cash-
mere [11] provides software based, pseudo-coherent
shared memory similar to Hera-JVM, but on a different
scale (multi-node clusters instead of multi-core proces-
sors). Intel’s manycore runtime McRT [9] is currently
targeted at symmetric multi-core architectures, however,
their sequestered mode, where application threads run
“bare metal” on processing cores, is similar to our exe-
cution of Java threads on the SPE cores and provides a
basis for McRT support of heterogeneous processors.

6 Conclusion
Hera-JVM abstracts processor heterogeneity by enabling
unmodified Java applications to run across the different
core types of the Cell processor. Preliminary results show
that the performance of applications can be significantly
affected by the core type on which it is run. This suggests
that if an application can provide information about its be-
haviour to the runtime system, it could be scheduled more
effectively. Future versions of Hera-JVM will take this
approach by employing code annotationhints and runtime
monitoring. In the long term, we expect a combination of
application hints, static code analysis and runtime moni-
toring to enable effective binding of threads to core types
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Figure 7: Changing the size of the code cache.

in heterogeneous architectures.
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