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Abstract

Smartphones enable a new, rich user experience in per-
vasive computing, but their hardware is still very lim-
ited in terms of computation, memory, and energy re-
serves, thus limiting potential applications. In this paper,
we propose a novel architecture that addresses these chal-
lenges via seamlessly—but partially—off-loading execu-
tion from the smartphone to a computational infrastruc-
ture hosting a cloud of smartphoneclones. We outline new
augmentedexecution opportunities for smartphones en-
abled by ourCloneCloudarchitecture.

1 Introduction

Smartphones with Internet access, GPS, sensors, and var-
ious applications are recently seeing explosive adoption.
The Apple iPhone [2], Blackberry smartphones [3], and
the Google Android phone [1] are a few prominent ex-
amples. In a slightly more advanced capability bracket
also lie mobile Internet devices (MIDs) such as the Nokia
N810 [7] and Moblin-based devices [6] that provide a
richer untethered Internet experience.

With popularity, such devices also see new applications
by a broader set of developers, beyond the mobile sta-
ples of personal information management and music play-
back. Now mobile users play games; capture, edit, anno-
tate and upload video; handle their finances; manage their
personal health and “wellness” (e.g., iPhone Heart Moni-
tor [16] and Diamedic [15]). However, with greater appli-
cation power comes greater responsibility for the mobile
execution platform: it is now important to track memory
leaks and runaway processes sucking up power, to avoid
or detect malicious intrusions and private data disclosure,
and to manage applications with expensive tastes for high-
volume data or advanced computational capabilities such
as floating-point or vector operations.

Solutions for all these advanced capabilities have been
known and are in (fairly) common practice in traditional
desktop and server platforms; this is, after all, why smart-
phone users expect to apply those solutions to their mobile
devices. Alas, such solutions tend to be expensive when
cast to mobile architectures. The hardware capabilities of
those devices are similar to those of the desktop PCs of the
mid-1990’s, many generations of hardware and software
behind (see Table 1 and contrast to Table 2).

For example, anti-virus software operates by perform-
ing frequent complete scans of all files in a file system,
and by imposing on-access scans on the virtual memory

Phone CPU RAM Battery (talk
(MHz) (MB) time in hrs)

IPhone 3G 412 512 5
Android HTC G1 528 192 6
Blackberry Bold 624 128 4.5

Table 1:Specifications of a few high-end smartphones. Their
network connectivities include Wi-Fi, UMTS, WCDMA, HS-
DPA, GSM/GPRS/EDGE, and Bluetooth 2.0.

Computer CPU RAM

MacBook Pro Laptop 2.5GHz 2-core 4GB
Dell Precision T7400 3.3GHz 4-core 8GB

Table 2:Specification of a commodity laptop and a desktop.
Their connectivities include 1Gbps Ethernet and Wi-Fi, and they
are frequently powered from the electric grid.

contents of a process, including memory-mapped files.
On a smartphone, even if the user were patient enough
to wait until such a CPU- and I/O-intensive scan were
over, she might still hit memory limits or run out of battery
power. It only gets worse if one considers tools like taint-
checking [23] for data leak prevention, floating-point and
vector operations for mathematical or signal-processing
applications such as face detection in media, etc.

In this paper we (re)discover an opportunity that might
overcome these concerns. On one hand, laptop, desktop
and server resources are abundant, ubiquitous, and contin-
uously reachable, as ensured by cloud computing, multi-
core desktop processors and plentiful wireless connec-
tivity such as 3G, UltraWideBand, Wi-Fi, and WiMax
technologies. The disparity in capability between such
computers and the untethered smartphone is high and
persistent. On the other hand, technologies for repli-
cating/migrating execution among connected computing
substrates, including live virtual machine migration and
incremental checkpointing, have matured and are used in
production systems [9,10].

We capitalize on this opportunity here by proposing
a simple idea:let the smartphone host its expensive, ex-
otic applications. However, do so on an execution engine
thataugmentsthe smartphone’s capabilities by seamlessly
off-loading some tasks to a nearby computer, where they
are executed in a cloned whole-system image of the de-
vice, reintegrating the results in the smartphone’s execu-
tion upon completion. This augmented execution over-
comes smartphone hardware limitations and it is pro-
vided (semi)-automatically to applications whose devel-
opers need few or no modifications to their applications.
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Primary Background Mainline Hardware Multiplicity

Figure 1:The five categories of augmented execution.

Some augmentation can operate in the background,
for asynchronous operations such as periodic file scans.
For synchronous operations intrinsic to the application
(e.g., a train of floating-point instructions in the applica-
tion code), augmentation can be performed by blocking
progress on the smartphone until the result arrives from
the clone in the cloud1. For concurrent operations to the
application that operate “around” it (e.g., taint-checking),
augmentation can also be concurrent in the clone cloud or
even speculative with the ability to undo operations on the
smartphone according to the result from the clone.

While the ability to off-load expensive computations
from weak, mobile devices to powered, powerful devices
has been recognized before, the novelty of our approach
lies in using loosely synchronized virtualized or emulated
replicas of the mobile device on the infrastructure to main-
tain two illusions: first, that the mobile user has a much
more powerful, feature-rich device than she does in real-
ity, and second that the programmer is programming such
a powerful, feature-rich device, without having to manu-
ally partition his application [28, 29], explicitly provision
proxies [20], or just dumb down the application.

In what follows, we outline the categories of augmen-
tation we consider, derive from them a straw-man archi-
tecture for our envisioned system, and outline the research
challenges ahead.

2 Augmented Execution
The scope of augmented execution from the infrastructure
is fairly broad. In this section, we attempt to categorize the
types of augmentation we envision (Figure 1). We discuss
how to achieve such augmentation in the next sections.
Primary functionality outsourcing: Computation-
hungry applications such as speech processing, video
indexing, and super-resolution are automatically split, so
that the user-interface and other low-octane processing
is retained at the smartphone, while the high-power,
expensive computation is off-loaded to the infrastructure,
synchronously. This is similar to designing the applica-
tion as a client-server service, where the infrastructure

1We use the term "cloud" in a broader sense to include personallap-
tops sitting on a nearby lap, desktops at work or at home, and servers
located in accessible data centers. Smartphones may have verydifferent
network latencies and bandwidth to each type of computer.

provides the service (e.g., the translation of speech to
text), or as a thin-client environment.

Background augmentation: Unlike primary functional-
ity outsourcing, this category deals with functionality that
does not need to interact with users in a short time scale.
Such is functionality that typically happens in the back-
ground, such as scanning the file system for viruses [5],
indexing files for faster search [4], analyzing photos for
common faces [8], crawling news web pages, etc. In this
case, entire processes can be marked (by the user or by the
programmer) or automatically inferred as “background”
processes, and migrated to the infrastructure wholesale.
Furthermore, off-loaded functionality can take on the role
of a “virtual client.” Even when the smartphone is turned
off, the virtual client can continue to run background
tasks. Later when the smartphone returns online, it can
synchronize its state with the infrastructure.

Mainline augmentation: This category sits between pri-
mary functionality outsourcing and background augmen-
tation. Here the user may opt to run a particular applica-
tion in a wrappedfashion, altering the method of its ex-
ecution but not its semantics. Examples are private-data
leak detection (e.g., to taint-check an application or appli-
cation set), fault-tolerance (e.g., to employ multi-variant
execution analysis to protect the application from trans-
parent bugs), or debugging (e.g., keep track dynamically
of allocated memory in the heap to catch memory leaks).
Unlike background augmentation, mainline augmentation
is interspersed in the execution of the application. Many
possibilities exist: for example, when a decision point is
reached in the taint-check example, the application on
the smartphone may block, perhaps causing the clone to
rewind back to a known checkpoint, and to re-execute for-
ward with taint-tracking, before deciding.

Hardware augmentation: This category is interesting
because it compensates for fundamental weaknesses of
the smartphone platform, such as memory caps or other
constraints, and hardware peculiarities.

For demonstration, we wrote a file system scanning ap-
plication in the DalvikVM, the execution environment of
the original Google Android phone (HTC G1). We ran it
to scan 100,000 directories and files. On the HTC G1 the
process took 3953 seconds. This was much higher than
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we expected. Through a debugger, we discovered that the
program invokes garbage collection very frequently due
to memory pressure. Just using faster hardware—we ran
on a QEMU-emulated single-core virtual machine on a
Dell Desktop with a 2.83GHz CPU and 4GB RAM—
significant savings can be observed even while thrashing:
our scenario only took 336 seconds (11.8x). If we were
to modify the heap and stack allocation of the virtual ma-
chine to remove most garbage collection activity, it could
improve that significantly. A similarly powerful augmen-
tation might execute a clone on an x86 port of the Android
platform, removing the costs of emulating the ARM pro-
cessor in the G1 Android smartphone.
Augmentation through multiplicity: The last category
we consider is unique in that it uses multiple copies of the
system image executed in different ways. This can help
running data parallel applications (e.g., doing indexing for
disjoint sets of images). This can also help the application
to “see the future,” by exhaustively exploring all possible
next steps within some small horizon—as would be done
for model checking—or to evaluate in maximum detail
all possible choices for a decision before making that de-
cision. Consider, for example, an energy-conserving pro-
cess scheduler that, in the absence of future knowledge,
can only guarantee decisions close but not at the opti-
mum. Instead, the whole system image could be replicated
multiple times in the infrastructure, choosing all possible
interleavings of processes during execution, and evaluat-
ing energy expenditure via some consumption model for
the device, ultimately making the scheduling decision that
results in the minimum expenditure. In this category of
augmentation, infrastructure cycles are lavished on essen-
tially a Monte-Carlo simulation of all possible outcomes
of the scheduler’s choices to make the optimal decision.
We end up wasting much energy (at the infrastructure) to
save a little bit of energy on the mobile device. However,
given the opportunity cost of being left with a dead bat-
tery during a critical time, this rather extravagant use of
the infrastructure may have significant benefits.

3 Architecture

Conceptually, our system provides a way to boost a smart-
phone application by utilizing heterogeneous computing
platforms through cloning and computation transforma-
tion. For doing so, our system (semi)-automatically trans-
forms a single-machine execution (e.g., smartphone com-
putation) into a distributed execution (e.g., smartphone
plus cloud computation) in which the resource-intensive
part of the execution is run in powerful clones. An addi-
tional benefit of cloning is that if the smartphone is lost
or destroyed, the clone can be used as a backup. Figure 2
illustrates the high-level system model of our approach.

Augmented execution is performed in four steps: 1)
Initially, a clone of the smartphone is created within the
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machine 
computation (b) Distributed computation
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Figure 2: Our system model. Our system transforms a
single-machine execution (smartphone computation) into a dis-
tributed execution (smartphone and cloud computation) (semi)-
automatically.

cloud (laptop, desktop, or server nodes); 2) The state
of the primary (phone) and the clone is periodically or
on-demand synchronized; 3) Application augmentations
(whole applications or augmented pieces of applications)
are executed in the clone, automatically or upon request;
and 4) Results from clone execution are re-integrated back
into the smartphone state.

Figure 3 shows a high-level view of our system ar-
chitecture. This is one possible design, and we are ex-
ploring the design space of different system architectures
(e.g., doing this task mostly in DalvikVMs in the case
of the Android platform). We achieve this by combin-
ing whole-system replication through incremental check-
pointing, (semi)-automatic partitioning and invocation of
augmented execution, and coordination of computation
between the primary (phone) and the clone. The system
components are running inside the operating system (OS).
TheReplicatoris in charge of synchronizing the changes
in phone software and state to the clone. TheController
running in the smartphone invokes an augmented execu-
tion and merges its results back to the smartphone. It inter-
acts with the Replicator to synchronize states while coor-
dinating the augmentation. TheAugmenterrunning in the
clone manages the local execution, and returns a result to
the primary.

Once a computation block for remote execution is spec-
ified, the following steps are performed for the primary
functionality outsourcing augmentation category. We omit
the steps for other augmentations due to space constraints.
First, the smartphone application process enters a sleep
state. The process transfers its state to the clone VM. The
VM allocates a new process state and overlays what it re-
ceived from the phone with hardware description transla-
tion. The clone executes from the beginning of the com-
putation block until it reaches the end of the computation
block. The clone transfers its process state back to the
phone. The phone receives the process state and reinte-
grates it, and wakes up the sleeping process to continue its
execution. This description omits much detail, and other
augmentation categories can be even less straightforward.
We outline the open research challenges involved in this
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Figure 3:Clone execution architecture for smartphones.

architecture next.

4 Research Agenda
In this section, we discuss major research questions we
need to address, and the directions we are currently taking
to build our system.
How is computation transformation done for aug-
mented execution? We expect that for some applications
augmentation is automated, while for others it involves
a simple manual process, e.g., annotating a self-contained
resource-intensive block of execution such as complicated
image processing code, or profiling and run-time parti-
tioning of applications to use augmented execution. For
example, we can run static or dynamic analysis in the
clone VM(s) to extract computationally expensive blocks
of computation and annotate the blocks for off-loading.
We plan to explore differentpoliciesthat decide when to
perform this computation transformation considering the
computation and network latency and resource usage such
as power. Note that augmentation here iscascaded: we
augment the application with a profiler and partitioner, so
as to better augment it in subsequent executions. Auto-
mated partitioning is an important research question.

For background or mainline augmentation, our sys-
tem can do simple automatic partitioning. For background
augmentation, an application is initially configured to use
the augmentation. When an operation (e.g., virus scan-
ning) is performed in the clone, the application simply
conveys the results to the phone user. For mainline aug-
mentation, the application developers can specify where
augmentation may be applicable if available. For exam-
ple, for taint checking, when an input is received from the
network or an output is sent to the network, the Controller
can invoke mainline augmentation to verify that the oper-
ation does not violate the application’s security policy.

For applications that require the primary functionality
outsourcing or mainline augmentation, we can profile run-
time performance and feasibility of operations, and off-
load computation based on the profiling information. If
some operations take too long or are not possible to run
because available memory is not large enough, the opera-
tions are tagged to invoke augmentation.
How do we do synchronization of states? The Replica-
tor faces the challenges of optimizing wireless bandwidth
and battery power while replicating fresh images to the

clone. To save bandwidth, it performsincremental check-
pointing, i.e., sends deltas of two checkpoints, andtwo-
level synchronization. By default, it periodically performs
synchronization in a coarse time scale (e.g., once every
few hours). For asynchronous operations like background
augmentation, the basic synchronization may be suffi-
cient. For mainline augmentation and primary function-
ality outsourcing, we perform more fine-grained synchro-
nization of in-memory and persistent states. The Replica-
tor achieves this goal in coordination with the Controller.

A main research question is to decide when and how
a mobile device performs synchronization (policies of
synchronization) considering the trade-offs between la-
tency/accuracy and resource usage. In addition to peri-
odic synchronization, the Replicator may exploit oppor-
tunities for optimization by performing opportunistic syn-
chronization. For example, if the smartphone discovers a
high-speed Wi-Fi connection, it can do more aggressive
synchronization to avoid using 3G cellular connections.
Also, if it is charging at night, it can synchronize without
draining the battery.
How do we coordinate execution between the primary
and the clone? Depending on operation types, we use dif-
ferent coordination strategies. For background augmen-
tation, the execution is off-loaded to the clone without
tight time constraints. The clone runs the computation
with some snapshot. When the clone finishes its compu-
tation, the Augmenter sends the result back to the Con-
troller. Synchronous operations are more difficult to sup-
port. When an operation is in the critical path of execu-
tion, the Controller invokes the operation at the clone, and
pauses the primary’s execution until it gets the result back
from the Augmenter. Once the Controller receives the re-
sult, it restarts the primary’s execution.

For mainline augmentation, we use more complicated
coordination to hide the latency. The primary performs
speculative execution, which has been used in local and
distributed file systems and virtual machine replication
for high availability [14,24,25] while invoking augmented
execution. The primary buffers any externally visible out-
put while the augmented execution is running. Once it re-
ceives acommit notificationfrom the clone, it releases the
buffered outputs.
How does hardware augmentation work? We provide
two kinds of hardware augmentation. First, we modify the
virtual hardware forcapability inflation. We increase the
CPU clock rate of the virtual hardware, the number of vir-
tual CPU cores (if there are multiple cores available), and
the memory size of VMs. This requires a mechanism that
reconciles the difference between the smartphone hard-
ware and the virtual hardware. Second, we expose any
special capabilities of the hardware platform (e.g., a cryp-
tographic accelerator) to VMs through virtual hardware.
What if we cannot trust clone VM environments? In
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the basic setup, we assume that the environment in which
we run clone VMs is trusted. In the future, one can imag-
ine that public infrastructure machines such as public
kiosks [21] and digital signs are widely available. We can
off-load computation of smartphone applications to such
public infrastructure machines, but they cannot be trusted.
Our basic system needs to be extended to check that the
execution done in the remote machine is trusted. One di-
rection is to utilize trusted hardware that certifies that the
computation done in the infrastructure is correct. At a high
level, the trusted hardware receives inputs and simple pro-
grams written in a little, domain-specific language and
sends out outputs and attestation, which is a generalized
form of trusted primitives studied in [12, 13]. The smart-
phone can do a simple verification of the proof to accept
the result from the clone. Refactoring computation around
this trusted hardware is an interesting research question.

Are smartphones all there is? Although the disparity be-
tween the capabilities of smartphones and computers at
home or in an infrastructure particularly favors the kind
of augmented execution we envision, one can see sev-
eral paths to applying this architecture more broadly. For
instance, one could imagine using this approach in the
context of data center architectures, in which some pro-
cessors are low-power Intel Atom, while others are high-
performance Intel Nehalem, or in the context of heteroge-
neous multi-core architectures, in which some cores have
floating-point (FP) instructions, for instance, while others
do not. In the latter scenario, a clone executing only the FP
code may be a good way to avoid more complex applica-
tion partitionings, and the fast bus speeds as well as copy-
on-write might make our approach particularly desirable.
A similarly fortuitous application would be the outsourc-
ing of sensitive tasks to a nearby core with trusted execu-
tion features on-package, keeping all other computation
on other simpler, perhaps less contested cores.

5 Related Work and Conclusion

Remote execution of resource-intensive applications for
resource-poor hardware is a well-known approach in
mobile/pervasive computing. All remote execution work
carefully designs and partitions applications between lo-
cal and remote execution, and runs a simple visual, au-
dio output routine at the mobile device and computation-
intensive jobs at a remote server [11, 17, 18, 20, 26, 29].
Rudenko et al. [26] and Flinn and Satyanarayanan [18]
explored saving power via remote execution. Cyber forag-
ing [11] uses surrogates (untrusted and unmanaged public
machines) opportunistically to improve the performance
of mobile devices. For example, both data staging [19]
and Slingshot [28] use surrogates. In particular, Slingshot
creates a secondary replica of a home server at nearby
surrogates. ISR [27] provides an ability to suspend on
one machine and resume on another machine by storing

virtual machine images in a distributed storage system.
Coign [22] automatically partitions a distributed applica-
tion composed of Microsoft COM components.

To our knowledge, our approach is the first to replicate
the whole smartphone image and to run the application
code with few or no modifications in powerful VM repli-
cas to transform a single-machine computation to a dis-
tributed computation (semi)-automatically.

We believe that the CloneCloud architecture enables
new, exciting modes of augmented execution for applica-
tions in diverse environments, and offers intriguing op-
portunities for research and for practical deployments
that marry the convenience of hand-held devices with the
power of cloud computing.
Acknowledgments: We are indebted to Anthony Joseph,
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