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Abstract

Today’s processors provide a rich source of statis-
tical information on program execution characteristics
through hardware counters. However, traditionally, op-
erating system (OS) support for and utilization of the
hardware counter statistics has been limited and ad hoc.
In this paper, we make the case for direct OS manage-
ment of hardware counter statistics. First, we show the
utility of processor counter statistics in CPU scheduling
(for improved performance and fairness) and in online
workload modeling, both of which require online contin-
uous statistics (as opposed to ad hoc infrequent uses).
Second, we show that simultaneous system and user use
of hardware counters is possible via time-division multi-
plexing. Finally, we highlight potential counter misuses
to indicate that the OS should address potential security
issues in utilizing processor counter statistics.

1 Introduction

Hardware counters are commonplace on modern pro-
cessors, providing detailed information such as instruc-
tion mix, rate of execution (instructions per cycle),
branch (control flow) prediction accuracy, and memory
access behaviors (including miss rates at each level of
the memory hierarchy as well as bus activity). These
counters were originally provided for hardware verifi-
cation and debugging purposes. Recently, they have
also been used to support a variety of tasks concern-
ing software systems and applications, including adap-
tive CPU scheduling [2,6,11,15,18], performance mon-
itoring/debugging [1, 5, 19], workload pattern identifica-
tion [4,7], and adaptive application self-management [8].

Except for guiding CPU scheduling, so far the oper-
ating system’s involvement in managing the processor
counter statistics has been limited. Typically the OS
does little more than expose the statistics to user applica-
tions. Additional efforts mostly concern the presentation
of counter statistics. For instance, the PAPI project [5]
proposed a portable cross-platform interface that appli-
cations could use to access hardware events of interests,
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which hides the differences and details of each hardware
platform from the user.

In this paper, we argue that processor hardware coun-
ters are a first-class resource, warranting general OS uti-
lization and requiring direct OS management. Our dis-
cussion is within the context of the increasing ubiquity
and variety of hardware resource-sharing multiproces-
sors. Examples are memory bus-sharing symmetric mul-
tiprocessors (SMPs), L2 cache-sharing chip multiproces-
sors (CMPs), and simultaneous multithreading (SMTs),
where many hardware resources including even the pro-
cessor counter registers are shared.

Processor metrics can identify hardware resource con-
tention on resource-sharing multiprocessors in addition
to providing useful information on application execution
behavior. We reinforce existing results to demonstrate
multiple uses of counter statistics in an online continu-
ous fashion. We show (via modification of the Linux
scheduler) that on-line processor hardware metrics-based
simple heuristics may improve both the performance and
the fairness of CPU scheduling. We also demonstrate the
effectiveness of using hardware metrics for application-
level online workload modeling.

A processor usually has a limited number of counter
registers to which a much larger number of hardware
metrics can map. Different uses such as system-level
functions (e.g., CPU scheduling) and user-level tasks
(e.g., workload profiling) may desire conflicting sets of
processor counter statistics at the same time. We demon-
strate that such simultaneous use is possible via time-
division multiplexing.

Finally, the utilization of processor counter statistics
may bring security risks. For instance, a non-privileged
user application may learn execution characteristics of
other applications when processor counters report com-
bined hardware metrics of two resource-sharing sibling
processors. We argue that the OS should be aware of
such risks and minimize them when needed.

2 Counter Statistics Usage Case Studies

We present two usage case studies of processor hard-
ware counter statistics: operating system CPU schedul-
ing and online workload modeling. In both cases, the



processor counter statistics are utilized in a continuous
online fashion (as opposed to ad hoc infrequent uses).

2.1 Efficient and Fair CPU Scheduling

It is well known that different pairings of tasks on
resource-sharing multiprocessors may result in differ-
ent levels of resource contention and thus differences
in performance. Resource contention also affects fair-
ness since a task may make less progress under higher
resource contention (given the same amount of CPU
time). A fair scheduler should therefore go beyond al-
locating equal CPU time to tasks. A number of pre-
vious studies [2, 6, 10, 11, 15, 18] have explored adap-
tive CPU scheduling to improve system performance and
some have utilized processor hardware statistics. The
case for utilizing processor counter statistics in general
CPU scheduling can be strengthened if a counter-based
simple heuristic improves both scheduling performance
and fairness.

In this case study, we consider two simple scheduling
policies using hardware counter statistics. The first (pro-
posed by Fedorovaet al. [11]) uses instruction-per-cycle
(IPC) as an indicator of whether a task is CPU-intensive
(high IPC) or memory-access-intensive (low IPC). The
IPC scheduler tries to pair high-IPC tasks with low-IPC
tasks to reduce resource contention. The second is a new
policy that directly measures the usage on bottleneck re-
sources and then matches each high resource-usage task
with a low resource-usage task on resource-sharing sib-
ling processors. In the simple case of SMPs, a single
resource — the memory bus — is the bottleneck.

Our implementation, based on the Linux 2.6.10 ker-
nel, requires only a small change to the existing CPU
scheduler. We monitor the bus utilization (or IPC) of
each task using hardware counter statistics. During
each context switch, we try to choose one ready task
whose monitored bus utilization (IPC) is complemen-
tary to the task or tasks currently running on the other
CPU or CPUs (we use last-value prediction as a simple
yet reasonable predictor, although other more sophisti-
cated prediction schemes [9] could easily be incorpo-
rated). Note that our implementation does not change the
underlying Linux scheduler’s assignation of equal CPU
time to CPU-bound tasks within each scheduling epoch.
By smoothing out overall resource utilization over time,
however, the scheduler may improveboth fairnessand
performance, since with lower variation in resource con-
tention, tasks tend to make more deterministic progress.

Experimental results We present results on CPU
scheduling in terms of both performance and fairness
using two sets of workloads — sequential applications
(SPEC-CPU2000) and server applications (a web server
workload and TPC-H). The test is performed on an SMP
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Figure 1: Normalized performance of individual SPEC-
CPU2000 applications under different scheduling schemes.

system consisting of 2 Intel Xeon 3.0 GHz CPUs with
Hyper-Threading disabled.

For experiments on SPEC-CPU2000 applications,
we run gzip, parser, and swim (low, medium, and
high bus utilization, respectively) on one CPU, and
mesa, wupwise, and art (again, low, medium, and
high bus utilization, respectively) on the other CPU.
In this scenario, ideally, complementary tasks (high-
low, medium-medium) should be executed simulta-
neously in order to smooth out resource demand.
We define the normalized application performance as
“ execution time under ideal condition

execution time under current condition”. The ideal ex-
ecution time is that achieved when the application runs
alone (with no processor hardware resource contention).
Figure 1 shows the normalized performance of SPEC-
CPU2000 applications under different schedulers.

We define two metrics to quantify the overall system
performance and fairness. Thesystem normalized per-
formance metric is defined as the geometric mean of each
application’s normalized performance. Theunfairness
factor metric is defined as the coefficient of variation
(standard deviation divided by the mean) of all applica-
tion performance. Ideally, the system normalized perfor-
mance should be 1 (i.e., no slowdown due to resource
contention) and the unfairness factor 0 (i.e., all applica-
tions are affected by exactly the same amount). Com-
pared to the default Linux scheduler, the bus-utilization
scheduler improves system performance by 7.9% (from
0.818 to 0.883) and reduces unfairness by 58% (from
0.178 to 0.074). Compared to the IPC scheduler, it im-
proves system performance by 6.5% and reduces unfair-
ness by 55%. The IPC scheduler is inferior to the bus-
utilization scheduler because IPC does not always accu-
rately reflect the utilization of the shared bus resource.

We also experimented with counter statistics-assisted
CPU scheduling using two server applications. The first
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Figure 2: Normalized throughput of two server applications
under different scheduling schemes.

is the Apache 2.0.44 web server hosting a set of video
clips, synthetically generated following the file size and
access popularity distribution of the 1998 World Cup
workload [3]. We call this workloadweb-clip. The sec-
ond application is the TPC-H benchmark running on the
MySQL 5.0.17 database. We choose a subset of 17 rela-
tively short TPC-H queries appropriate for an interactive
server workload. The datasets we generated for the two
workloads are at 316 MB and 362 MB respectively. For
our experiments, we first warmup the server memory so
that no disk I/O is performed during performance mea-
surement. Figure 2 presents server throughput normal-
ized to that when running alone without resource con-
tention (ideal). Compared to the default Linux scheduler,
the bus-utilization scheduler improves system through-
put by 6.4% (from 0.894 to 0.952) and reduces unfair-
ness by 80% (from 0.118 to 0.024). In this case, the
IPC scheduler’s performance is close to that of the bus-
utilization scheduler, with system throughput at 0.951
and an unfairness factor of 0.025.

2.2 Online Workload Modeling

In a server system, online continuous collection of per-
request information can help construct workload mod-
els, classify workload patterns, and support performance
projections (as shown in Magpie [4]). Past work has
mostly focused on the collection of software metrics like
request execution time. We argue that better server re-
quest modeling may be attained by adding processor
hardware counter statistics. We support this argument
using a simple experiment. We ran our TPC-H workload
for 10 minutes and monitored around 1000 requests. For
each request, we collected its execution time and mem-
ory bus utilization (measured using processor hardware
counters). The per-request plot of these two metrics is
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Figure 3:TPC-H request modeling using execution time and
memory access intensity (measured by the Intel Xeon processor
counter metric FSBDATAREADY per CPU cycle).

presented in Figure 3.
As can be seen from our result, the counter statis-

tics can assist request classification. For instance, while
TPC-H query Q3, Q6, and Q12 all exhibit similar exe-
cution time, they vary in their need for memory band-
width, making it easy to distinguish them if this statistic
is used. Further, hardware statistics can also help project
performance on new computing platforms. For exam-
ple, by migrating to a machine with a faster processor
but identical memory system, a memory-access-heavy
request (TPC-H Q3) would show less performance im-
provement than one with lower bandwidth requirements
(TPC-H Q6). Software metrics alone may not provide
such differentiation.

3 Managing Resource Competition

Although many hardware metrics can be configured
for observation, a processor usually has a limited number
of counter registers to which the hardware metrics must
map. Additionally, the configurations of some counter
metrics are in conflict with each other and thus these met-
rics cannot be observed together. Existing mechanisms
for processor counter statistics collection [1, 17, 20] do
not support competing statistics collections simultane-
ously (i.e., during the same period of program execu-
tion).

Competition for counter statistics can result from sev-
eral scenarios. Since system functions typically re-
quire continuous collection of a specific set of hardware
metrics over all program executions, any user-initiated
counter statistics collection may conflict with them. In
addition, on some resource-sharing hardware processors
(particularly SMTs), sibling processors share the same



set of counter registers. Possible resource competition
may arise when programs on sibling processors desire
conflicting counter statistics simultaneously. Finally, a
single application may request the use of conflicting
counter statistics, potentially for different purposes.

In such contexts, processor counter statistics should be
multiplexed for simultaneous competing uses and care-
fully managed for effective and fair utilization. The OS’s
basic mechanism to resolve resource competition is time-
division multiplexing (alternating different counter reg-
ister setups at interrupts) according to certain allocation
shares. Time-division multiplexing of counter statistics
has already been employed in SGI IRIX to resolve inter-
nal conflicts among multiple hardware metrics requested
by a single user. Our focus here is to manage the com-
petition between system-level functions and application-
level tasks from multiple users.

The time-division multiplexing of hardware counter
statistics is viable only when uses of counter statistics
can still be effective (or sustain only slight loss of ef-
fectiveness) with partial-time sampled program execu-
tion statistics. Our allocation policy consists of two
parts. First, the fraction of counter access time appor-
tioned to system-level functions must be large enough
to fulfill intended objectives but as small as possible to
allow sufficient access to user-level tasks. Since the
system-level functions are deterministic, we can stati-
cally provision a small but sufficiently effective alloca-
tion share for them. Second, when multiple user ap-
plications desire conflicting hardware counter statistics
simultaneously (e.g., when they run on sibling proces-
sors that share hardware counter registers), they divide
the remaining counter statistics access time using any
fair-share scheduler. We recognize that in order to be
effective, certain applications might require complete
monopoly of the hardware counters (e.g., when a perfor-
mance debugger must find out exactly where each cycle
of the debugged program goes [1]). The superuser may
change the default allocation policy in such cases.

Experimental results We experimentally validate
that, as an important system-level function, the counter
statistics-assisted CPU scheduler can still be effec-
tive with partial-time sampled counter statistics. Our
CPU scheduler, proposed in Section 2.1, uses proces-
sor counter statistics to estimate each task’s memory bus
utilization. We install a once-per-millisecond interrupt
which allows us to change counter register setup for each
millisecond of program execution. In this experiment,
the scheduling quantum is 100 milliseconds and we col-
lect processor counter statistics only during selected mil-
lisecond periods so that the aggregate collection time ac-
counts for the desired share for CPU scheduling.

Figures 4 and 5 show the scheduling results for SPEC-
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Figure 4: CPU scheduling performance and fairness of six
SPEC-CPU2000 applications under partial-time sampled pro-
cessor counter statistics. The “system normalized perfor-
mance” and “unfairness factor” metrics were defined in Sec-
tion 2.1.

CPU2000 applications and server applications respec-
tively, as the share of counter statistics collection time
is varied. The experimental setup, metrics used, and ap-
plications are the same as in Section 2.1. In general,
scheduling effectiveness depends on application behav-
ior variability. Applications with high behavior variabil-
ity may be difficult to predict even with more sophis-
ticated non-linear table-based predictors [9]. However,
for SPEC-CPU2000 applications, our results suggest that
with only a 5% share of counter statistics collection time,
the CPU scheduling performance and fairness approxi-
mates that attained with full counter statistics collection.
For server applications, a 33% share is needed since the
behavior of individual requests fluctuates and is more
variable. These results indicate that the effectiveness of
a counter statistics-assisted CPU scheduler may be fully
realized with only a fraction of counter statistics collec-
tion time.

4 Security Issues

Exposing processor counter statistics to non-
privileged users and utilizing them in system functions
may introduce new security risks. We examine two such
issues.

Information leaks On resource-sharing multiproces-
sors, a program’s execution characteristics are affected
by behaviors of programs running on sibling processors.
As a result, the knowledge of a program’s own hard-
ware execution characteristics may facilitate undesirable
covert channel attacks [13] and side channel attacks for
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Figure 5: CPU scheduling performance and fairness of web-
clip and TPC-H applications under partial-time sampled pro-
cessor counter statistics.

cryptanalysis [12].
Here we show a simple example of how the private

RSA key in OpenSSL [14] may be stolen. One vital step
in the RSA algorithm is to calculate “Xd modp” whered

is the private key andX is the input. In OpenSSL, mod-
ular exponentiation is decomposed into a series of modu-
lar squares and modular multiplications. By knowing the
sequence of squares and multiplications, one can infer
the private keyd with high chance. For example,X11 is
decomposed into((X2)2 ∗X)2∗X . If one knows the ex-
ecution order ”sqr, sqr, mul, sqr, and mul”, one can easily
infer that the key is 11. Percival [16] showed that when
a carefully constructed microbenchmark runs together
with the RSA operation on the Intel Hyper-Threading
platform, it may distinguish an RSA square from a RSA
multiplication based on observed cache miss patterns.
We show that this can be done more easily if certain
hardware counter statistics are available. To demonstrate
this, we runXd exponentiation for many random pri-
vate keysd and record the processor counter values for
each individual multiplication and square operation. As
we can see from Figure 6, the metric of branch instruc-
tion count divided by total instruction count (branches
per instruction) provides a clear differentiation between
the two types of operations.

The direct exposure of hardware counter statistics to
non-privileged user applications may exacerbate existing
risks in the following ways.

• Some statistics reported by hardware counters are
combined event counts from multiple sibling pro-
cessors (typically when the statistics concern shared
hardware resources). Such statistics provide a direct
way for a malicious program to learn information
about other applications.
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Figure 6: X
d is decomposed into a series of multiplications

and squares in OpenSSL. Here X=1 and alld’s are randomly
generated with bit length no more than 6. Each point repre-
sents either a square (square symbol) or a multiplication (star
symbol). The Y axis represents branches per instruction.

• Among those counter statistics that do not include
event counts from sibling processors, some concern
program execution characteristics that are affected
by behaviors of programs running on sibling pro-
cessors. An example is the L2 cache miss rate on
L2 cache-sharing multiprocessors. These statistics
can still be used to infer behavior patterns of other
applications. Although such information may be
learned at the software level (e.g., through software
sampling or probing), processor hardware counters
expose the information with significantly higher ac-
curacy while requiring almost no runtime overhead.

To prevent such undesirable information leaks, the
system must be judicious in exposing hardware statis-
tics to non-privileged user applications. Relevant hard-
ware statistics can be withheld due to the above secu-
rity concerns. Note that a fundamental tradeoff exists
between security and versatility in information disclo-
sure. In particular, withholding contention-dependent
hardware statistics may impair an application’s ability
to employ adaptive self-management. Such tradeoffs
should be carefully weighed to develop a balanced policy
for hardware statistics exposure.

Manipulation of system adaptation When system
functions utilize program execution characteristics for
adaptive control, an application may manipulate such
adaptation to its advantage by skillfully changing its exe-
cution behavior. For example, consider an adaptive CPU
scheduler (like our bus-utilization scheduler proposed in
Section 2.1) that uses partial-time sampled program ex-
ecution characteristics to determine task resource usage
levels and subsequently to run complementary tasks on



resource-sharing sibling processors. A program may in-
crease its resource usage only during the execution statis-
tics sampling periods in order to be unfairly classified as
a high resource-usage task. A possible countermeasure
for the adaptive scheduler is to collect program execu-
tion characteristics using randomized sample periods. In
general, the OS should be aware of possible manipula-
tions of system adaptation and design counter-measures
against them.

5 Conclusion

With the increasing ubiquity of multiprocessor, multi-
threaded, and multicore machines, resource-aware poli-
cies at both the operating system and user level are be-
coming imperative for improved performance, fairness,
and scalability. Hardware counter statistics provide a
simple and efficient mechanism to learn about resource
requirements and conflicts without application involve-
ment. In this paper, we have made the case for direct
OS management of hardware counter resource competi-
tion and security risks through demonstration of its utility
both within the operating system and at user level. On-
going work includes development of the API and poli-
cies for hardware counter resource management within
the kernel.
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