
Hyperspaces for Object Clustering and Approximate Matching in

Peer-to-Peer Overlays

Bernard Wong Ýmir Vigfússon Emin Gün Sirer

Dept. of Computer Science, Cornell University, Ithaca, NY 14853

bwong@cs.cornell.edu ymir@cs.cornell.edu egs@cs.cornell.edu

Abstract

Existing distributed hash tables provide efficient mecha-

nisms for storing and retrieving a data item based on an

exact key, but are unsuitable when the search key is simi-

lar, but not identical, to the key used to store the data item.

In this paper, we present a scalable and efficient peer-

to-peer system with a new search primitive that can effi-

ciently find the k data items with keys closest to the search

key. The system works via a novel assignment of vir-

tual coordinates to each object in a high-dimensional, syn-

thetic space such that the proximity between two points in

the coordinate space is correlated with the similarity be-

tween the strings that the points represent. We examine

the feasibility of this approach for efficient, peer-to-peer

search on inexact string keys, and show that the system

provides a robust method to handle key perturbations that

naturally occur in applications, such as file-sharing net-

works, where the query strings are provided by users.

1 INTRODUCTION

Modern P2P substrates do not provide support for effi-

ciently locating objects whose keys are not known pre-

cisely. In settings where queries are based on terms pro-

vided by users, imprecision stemming from partial speci-

fications of keywords, common variations of search terms

and misspellings are unavoidable. For instance, approx-

imately 20% of all Google queries for “Britney Spears”

misspell the artist’s name [2]. Efficiently routing a query

to a set of objects whose keys are close1 but not identical

to the search key is a difficult problem known as “approx-

imate match.”

Even though peer-to-peer systems were initially mo-

tivated by file-sharing, modern P2P substrates do not

provide efficient primitives for approximate matching.

Unstructured peer-to-peer systems [1] provide a search

1Closeness here is defined based on an application-supplied

similarity measure, such as edit distance. Our approach requires

only that this measure σ obey σ(a, b) ≥ 0, σ(a, b) = σ(b, a)
and σ(a, c) ≤ σ(a, b) + σ(b, c). We use edit-distance as a run-
ning example without loss of generality.

primitive, which is based effectively on query broad-

cast2. Gnutella nodes receiving the search query match

it against their database of known items using a fuzzy

similarity metric to yield the approximate matches. Such

broadcast-based approaches are inefficient as they may

take up to N hops in the worst case where N is the

number of hosts, and place a super-linear aggregate load

on the network. In contrast, structured peer-to-peer sys-

tems [21, 23, 28, 19, 16, 12] provide an efficient lookup

primitive that can typically locate a target within log N

hops. While these systems provide strong worst-case

bounds, the lookup operation does not permit approxi-

mate matching. Naive approaches to layer approximate

matching on top of a DHT lookup, by inserting each ob-

ject under all possible key variations and performing ev-

ery query in parallel with all k variants of the search key,

lead to highly inefficient solutions because k is typically

on the order of a few hundred even for a moderate length

movie title with only two permuted characters. Finally,

systems that permit range lookups [6, 8] can perform a

lookup within a range defined by numeric coordinates,

but are difficult to adopt for use with approximate string

matching. Overall, existing systems provide inefficient

and approximate search or efficient and precise lookup,

but not efficient and approximate match.

In this paper, we present e-llama, a scalable peer-to-

peer system that can efficiently find the k closest data

items for any search key. The central insight behind e-

llama is to define a very high-dimensional space (a hyper-

space) in which every object and node is assigned a virtual

coordinate. The bases (axes) for the hyperspace consist of

string labels. The virtual coordinate for every object is the

tuple created by measuring the edit-distance to each of the

axis labels. For instance, for bases aaa, cbc and abd, the

keys abc, abd and ddd would map to the points 〈2, 1, 1〉,
〈2, 2, 0〉 and 〈3, 3, 2〉, respectively. This virtual coordinate
assignment captures the relative similarities of the strings

2Optimizations, such as supernodes and expanding ring

search, make the broadcast process more efficient, but the prim-

itives are still based fundamentally on flooding.

1



through the edit-distances to the axis labels.

An efficient algorithm, based on small-worlds [13], for

navigating this multi-dimensional hyperspace enables e-

llama to quickly identify approximately matching objects.

E-llama assigns a random location in hyperspace to each

overlay node, and each node maintains the set of objects

for which it is the closest node. Every node also keeps

track of other nodes in concentric rings of exponential

radii. E-llama routes a query to the closest node for a tar-

get coordinate by greedily determining the peer in its rings

that is closest to the target coordinate and forwarding the

query. Each forward brings the query closer to the tar-

get coordinate and to a node with more information in the

proximity of the targeted region than the previous node.

This protocol converges to the closest node in O(log N)
hops with high probability. Once the target node has been

located, the search expands in a sphere around the target

until k matching objects are found.

Overall, this paper makes three contributions. First,

it describes a new technique for constructing a synthetic

space in which similar keys are clustered. Second, it de-

scribes a scalable and efficient protocol for mapping this

space to nodes and routing queries to nodes, yielding a

DHT with an approximate match primitive. Finally, it

demonstrates the feasibility of the system and analyzes

the effects of various system parameters.

2 HYPERSPACE

2.1 Basis Selection
Creating a hyperspace that can provide fine-grain differ-

entiation of different objects requires a careful selection

of string labels as dimension bases (axes). In e-llama, the

virtual coordinate of every object is the tuple created from

its edit-distance to each of the axis labels. In essence,

axis labels act as anchor points, and each component of

an object’s coordinate provides the distance of the object

from that anchor point. Much like the Post Office met-

ric on normed vector space [5], the distance from each

anchor point clusters similar objects to the extent differ-

entiable by that axis label, assigning them similar coordi-

nates. However, a poor selection or an insufficient number

of bases can assign similar coordinates to even dissimilar

objects. For example, if axis labels are random strings,

it is likely that each label will have a very similar edit-

distance to any real English string of the same length. A

careful selection of the axis labels is important, as the la-

bels define the hyperspace in which keys will be clustered.

Labels that have some similarity to the actual objects in

the system can help accentuate the differences in dissimi-

lar objects. Intuitively, given sufficient labels, each object

has a high probability of resembling some labels, the set

of which is different and distinct from the set of labels re-

sembling dissimilar objects. This intuition leads to simply

selecting axis labels from actual objects. For example, in

a deployment with movie titles as objects, a small random

sampling of movie titles can serve as a set of axis labels.

Once selected, axis labels do not need to change as long

as the distribution of object names is relatively stable.

In addition to the selection of axis labels, the number

of dimensions also plays an important role in creating an

effective hyperspace for differentiating dissimilar objects.

Increasing the number of bases should, intuitively, widen

the separation of coordinates between dissimilar strings

as it becomes increasingly unlikely for them to have the

same edit-distance to a large number of independently

chosen axis labels. The cost of additional bases is low, re-

quiring only minimal increases in string storage and band-

width. As we will see later in section 4, increasing the

number of bases significantly improves the distinguishing

power of the hyperspace yet incurs relatively little over-

head.

Note that the Euclidean distance between the coordi-

nates for two strings s1 and s2 is loosely related to the

edit-distance between these two strings. In the worst

case, these two strings might require n = ||s1|| =
||s2|| many insertions, deletions and replacements from
the axis labels, and hence share the same coordinate,

and the edit-distance between s1 and s2 might be 2n.

This bound forces proximity between related strings, and

proper choice of independent axis labels forces dissimilar

strings to acquire divergent coordinates in practice, as we

show later in section 4.

2.2 Node ID Assignment
Similar to objects, nodes are assigned coordinates in hy-

perspace. Much like DHTs, each e-llama node is respon-

sible for storing the set of objects for which it is the clos-

est node. The assignment of node coordinates involves

a subtlety. While any random assignment of coordinates

to nodes will lead to a correct system that will work, the

strong result that assures that routing will be performed in

O(logN ) hops [26] requires that nodes be distributed in

hyperspace according to the same distribution as objects.

To ensure that this is the case, node IDs in e-llama are de-

termined by random sampling. Each node independently

selects a random object name, determines its coordinate,

and adopts that location as its identifier. Nodes ensure

uniqueness by detecting coordinate collisions at join time.

As in axis labels, node coordinates do not need to change

as long as the distribution of object coordinates remains

relatively stable.

3 ROUTING FRAMEWORK

The basic e-llama routing framework relies on multi-

resolution rings to organize peers, a ring membership

replacement scheme to maximize the usefulness of ring

2



members, and a gossip protocol for node discovery and

membership dissemination. Finding the k data items with

keys closest to the search key involves two phases. First,

a multi-hop query routing protocol finds the closest node

to the search key. Once the closest node is found, it recur-

sively queries its nearby peers to determine the k closest

data items.

3.1 Multi-Resolution Rings
The intuitive reason for the multi-resolution ring structure

for organizing peers is to provide each node with near au-

thoritative information on nodes that are near it, but also

provide a sufficient number of out-pointers to far-away

nodes to allow large hops and facilitate rapid search. Each

e-llama node organizes its peers into a set of concentric

rings centered on itself, where the ring distance is a mea-

sure of its Euclidean distance to the node. The ith ring

has inner radius ri = αsi−1 and outer radius Ri = αsi,

for i > 0, where α is a constant, s is the multiplicative in-

crease factor, and r0 = 0, R0 = α for the innermost ring.

Each node keeps track of a finite number of rings; all rings

i > i∗ for a system-wide constant i∗ are collapsed into a

single, outermost ring that spans the range [αsi
∗

,∞].

3.2 Ring Membership Management
The number of nodes per ring, p, represents a trade-off be-

tween accuracy and overhead. A large p allows each node

to retain more information for better route selection dur-

ing query routing, but requires additional overhead in both

memory and bandwidth. The utility of a ring member is in

relationship to the amount of diversity it can provide to the

ring. For each ring, the node retains p+ lmembers, where

l is a constant number of additional nodes that serve as

potential ring candidates for use in the next ring member-

ship selection process. During ring membership selection,

an infrequent periodic event, the subset of p nodes from

the p + l members that forms a polytope with the largest

hypervolume based on their coordinates are kept as ring

members.

3.3 Gossip Based Node Discovery
A standard anti-entropy push protocol [10] provides node

discovery and dissemination between e-llama nodes. At

each gossip round, an e-llama node collects a random se-

lection of its ring members, and sends this collection to a

random member in each of its rings. The receiving node

contacts each peer in the collection to discover their co-

ordinates, and these peers are then stored as potential re-

placement for the node’s current primary ring members.

3.4 Query Routing
Locating the closest node to the search key, the first phase

in finding the k closest data items, involves a multi-hop

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 1  2  3  4  5

R
e

la
ti
v
e

 r
a

n
k

Number of exchanged characters

Max. relative rank
Min. relative rank

Figure 1: The relative rank of the actual string across different

number of character exchanges. Less than 0.02 of the total en-

tries need to be searched on average before finding the actual

string for query strings with up to 5 characters exchanged.

search where each hop exponentially reduces the distance

to the closest node. On receiving a query, an e-llama node

determines its closest peer to the search key’s coordinate.

If the closest peer is closer to the key than the current

node by some threshold, the node forwards the query to

the peer. Otherwise, the node selects the closest peer or

itself, whichever is closer to the key, as the closest node.

This query routing protocol can find the closest node in

O(log N) hops with high probability [25].

3.5 K-Clustering
Once the closest node to the search key is found, e-llama

determines all objects within a sphere centered around the

key’s coordinate, expanding the sphere until the k closest

data items are inside. The protocol begins with the closest

node asking all its neighbors within a distance of h from

the search key’s coordinate to recursively determine the k

closest data items using the same query ID. Given that a

node only responds to a search request once per query ID,

the recursion terminates when all nodes within the sphere

returns what each thinks is the k closest data items. The

closest node receives up to k data items from each of its

peers within the sphere, and determine the k actual closest

items. The protocol repeats with a larger sphere if there

are less than k data items within the previous sphere.

4 EVALUATION

We evaluate e-llama by applying it to synthetic searches

based on the NetFlix database [3], which consists of a

listing of 17770 movie titles. The first test consists of

1000 randomly chosen movie titles with a small number

of characters exchanged to simulate typos and spelling

variations. For the second test, 6552 randomly selected

movie titles were modified with real human typos and

misspellings from the Searchspell database [4].

3



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2  4  6  8  10  12  14  16  18

R
e

la
ti
v
e

 r
a

n
k

Number of dimensions

Max. relative rank
Min. relative rank

Figure 2: The relative rank of the actual string across differ-

ent number of dimensions. A small increase in the number of

dimensions can dramatically improve the relative rank.

We investigated several schemes for axis label selec-

tion which includes using random strings of both short

and long length, using random English strings taken from

a dictionary, and using randomly chosen titles from the

movie database. We found that using movie titles as axis

labels consistently outperforms the other two schemes,

and use it exclusively for the rest of the evaluation.

We evaluate the effectiveness of e-llama’s approximate

match using the relative rank of the original string in the

search results for the modified query string. We order the

results of the approximate match based on the Euclidean

distance of coordinates we defined earlier. Thus, if the

original string has the lowest Euclidean distance to the

query string, its absolute rank is 1; the absolute rank is 2 if

one other string is closer to the query string, and so forth.

The relative rank is the rank divided by the total number

of movie titles in the database. Relative rank captures the

average cluster size necessary to contain the desired object

and thus the percentage of results that a user must check

before locating the intended object. Since several titles

commonly share the same distance to a modified query

string, we show both the lowest and highest relative rank

of the original string.

We first examine the change in relative rank from differ-

ent numbers of perturbations to the original movie title. In

this experiment, the number of dimensions is fixed at 20.

Figure 1 shows that increasing the number of modifica-

tions significantly increases the difficulty of the problem.

With five characters exchanged, the actual object has an

average relative rank less than 0.02. In other words, the

object resides within a cluster that contains less than two

percent of the total number of movies on average. For

perturbations of only one character, the average cluster

size is less than 0.01 percent of the number of movie ti-

tles. These results suggest that the e-llama technique can

return a very small cluster that nevertheless contains the

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 2  4  6  8  10

R
e

la
ti
v
e

 r
a

n
k

Number of dimensions

Max. relative rank
Min. relative rank

Figure 3: The relative rank of a movie title to one with human

typos across different number of dimensions. As before, the rel-

ative rank decays rapidly as the number of dimensions increases.

desired object, even with very few dimensions in the hy-

perspace. A small cluster size limits the number of re-

sults the users must manually look through to find their

actual object. A less encouraging result is the exponential

growth in the relative rank from the linear increase in the

number of perturbations.

Fortunately, Figure 2 shows that the relative rank also

decreases exponentially with a linear increase in the num-

ber of dimensions. In this experiment, we fix the number

of perturbations at two. With only one dimension, the

relative rank is nearly 0.14. This suggests that the approx-

imate string matching problem is not well suited to solu-

tions using distributed hash tables which are restricted to a

one dimensional space. However, with a modest increase

from one to five dimensions, the relative rank falls signifi-

cantly to approximately 0.01. The same phenomenon can

be seen in Figure 3. The experiment consists of 6552 ran-

domly selected movie titles, each of which has 80% of its

words replaced by a mistyped or misspelled version from

the Searchspell database [4] of human typos and spelling

errors. On average, the edit distance between the queries

and the actual titles is 4.9. In this setting, an increase
from one to five dimensions decreases the relative rank

to below 0.02. Additional dimensions require only small

and inconsequential increases in bandwidth and compu-

tational overhead for most practical applications. Appli-

cations that receive search strings with a high number of

perturbations can simply configure their deployment with

a higher number of dimensions in order to arrive at their

desired average relative rank.

5 RELATEDWORK

E-llama is a distributed hash table that provides a novel

approximate match primitive. It differs from previous

DHTs [21, 23, 28, 19, 16, 12], which support only precise

lookups.

4



The high dimensional hyperspace in e-llama is similar

conceptually to virtual coordinate schemes for estimating

inter-node latencies [17, 9, 14, 24, 22, 18]. However, in-

creasing the number of dimensions entails very little as-

sociated cost in e-llama as the coordinates are completely

synthetic and do not require network pings for assign-

ment. The low cost of coordinate assignment and com-

parison also renders expensive techniques for reducing di-

mensions unnecessary.

Query routing in e-llama most closely resembles rout-

ing in Meridian [25], Small-World networks [13], and

CAN [20]. In CAN, each node knows its immediate

closest neighbor in each of the dimensions and greedily

routes to the destination. However, border cases in deal-

ing with churn makes CAN difficult to implement and de-

ploy in practice. Small-World networks introduce long

links between peers to reduce the number of routing hops

to O(log2 N). The query routing in e-llama is similar
to Small-World network routing but reduces the number

of hops to O(log N) by introducing additional structure.
Meridian uses a similar multi-resolution ring structure as

e-llama, but focuses on operating in non-grid like metric

spaces and has no notion of absolute position of any of the

nodes.

Efficient similarity comparison of strings are typically

based on sampling techniques [11, 7, 15], where portions

of a string represent the entire string. In these techniques,

each string is broken down into a number of overlapping

sub-strings of fixed length and each individual sub-string

is hashed. A consistent sampling of approximately k sub-

string hashes is taken from each string as fingerprints, and

the resemblance of two strings is the number of shared

sub-strings in the fingerprint, divided by the total num-

ber of unique sub-strings from the fingerprints. These

schemes differ from e-llama as they require a centralize

system for performing string comparison, where e-llama

provides a distributed and peer-to-peer solution.

In [27], the authors use the Soundex algorithm to en-

code keywords by their phonemes before indexing them in

a DHT. Unlike edit distance, Soundex is appropriate only

for English keywords and is not effective against typing

errors.

6 SUMMARY

In this paper, we described a new technique for efficient

approximate matching in peer-to-peer overlays. The tech-

nique is scalable, efficient, and of immediate applicability

to domains, such as peer-to-peer filesharing, where query

terms are provided by users and require an approximate

match against objects in the system. More generally, we

presented an object clustering technique based on creating

a synthetic, high-dimensional space and assigning coordi-

nates to objects in this space where Euclidean distances

capture similarity. Given appropriately chosen axis labels,

such a mapping can facilitate the identification of similar

objects. We showed how coupling such a space with an ef-

ficient search function based on small-worlds can yield an

efficient and scalable system. This overall approach may

be applicable to other domains where a similarity-based

clustering of objects is desired.

References
[1] Gnutella. http://www.gnutella.com/.

[2] Britney Spears spelling correction.

http://www.google.com/jobs/britney.html.

[3] Netflix Prize. http://www.netflixprize.com.

[4] Searchspell. http://www.searchspell.com/typo/.

[5] Metric space. http://en.wikipedia.org/wiki/Metric space.

[6] A. Bharambe, M. Agrawal and S. Seshan. Mercury: Sup-

porting Scalable Multi-Attribute Range Queries. In SIG-

COMM, Portland, Oregon, August 2004.

[7] A. Broder, S. Glassman and M. Manasse. Syntactic Clus-

tering of the Web. In World Wide Web Conference, Santa

Clara, California, April 1997.

[8] A. Crainiceanu, P. Linga, J. Gehrke and J. Shanmugasun-

daram. Querying Peer-to-Peer Networks Using P-Trees. In

WebDB, Paris, France, June 2004.

[9] F. Dabek, R. Cox, F. Kaashoek and R. Morris. Vivaldi:

A Decentralized Network Coordinate System. In SIG-

COMM, Portland, Oregon, August 2004.

[10] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.

Shenker, H. Sturgis, D. Swinehart and D. Terry. Epidemic

algorithms for replicated database maintenance. In PODC,

Vancouver, Canada, August 1987.

[11] N. Heintze. Scalable Document Fingerprinting. In

Workshop on Electronic Commerce, Oakland, California,

November 1996.

[12] F. Kaashoek and D. Karger. Koorde: A Simple Degree-

Optimal Distributed Hash Table. In IPTPS Workshop,

Berkeley, California, February 2003.

[13] J. Kleinberg. The Small-World Phenomenon: An Algorith-

mic Perspective. In STOC, Portland, Oregon, May 2000.

[14] H. Lim, J. Hou and C. Choi. Constructing Internet Co-

ordinate System Based on Delay Measurement. In IMC,

Miami Beach, Florida, October 2003.

[15] U. Manber. Finding Similar Files in a Large File System.

InWinter Technical Conference, San Francisco, California,

January 1994.

[16] P. Maymounkov and D. Mazieres. Kademlia: A Peer-

to-Peer Information System Based on the XOR Metric.

In IPTPS Workshop, Cambridge, Massachusetts, March

2002.

[17] T. Ng and H. Zhang. Predicting Internet Network Distance

with Coordinates-Based Approaches. In INFOCOM, New

York, New York, June 2002.

5



[18] M. Pias, J. Crowcroft, S. Wilbur, T. Harris and S. Bhatti.

Lighthouses for Scalable Distributed Location. In Intl.

Workshop on P2P Systems, Berkeley, California, February

2003.

[19] S. Ratnasamy, P. Francis, M. Hadley, R. Karp and S.

Shenker. A Scalable Content-Addressable Network. In

SIGCOMM, San Diego, California, August 2001.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.

Shenker. A Scalable Content-Addressable Network. In

SIGCOMM, San Diego, California, August 2001.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-

tems. In Middleware, Heidelberg, Germany, November

2001.

[22] Y. Shavitt and T. Tankel. Big-Bang Simulation for Em-

bedding Network Distances in Euclidean Space. In INFO-

COM, San Francisco, California, March 2003.

[23] I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Bal-

akrishnan. Chord: A Scalable Peer-to-peer Lookup Ser-

vice for Internet Applications. In SIGCOMM, San Diego,

California, August 2001.

[24] L. Tang and M. Crovella. Virtual Landmarks for the Inter-

net. In IMC, Miami Beach, Florida, October 2003.

[25] B. Wong, A. Slivkins and E. G. Sirer. Meridian: A

Lightweight Network Location Service without Virtual

Coordinates. In SIGCOMM, Philadelphia, Pennsylvania,

September 2005.

[26] B. Wong, A. Slivkins and E. G. Sirer. A Framework for

Network Location-Aware Node Selection. TOCS (in sub-

mission).

[27] M. Zaharia, A. Chandel, S. Saroiu and S. Keshav. Finding

Content in File-Sharing Networks When You Can’t Even

Spell. In Intl. Workshop on P2P Systems, Bellevue, Wash-

ington, February 2007.

[28] B. Zhao, J. Kubiatowicz and A. Joseph. Tapestry: An in-

frastructure for fault-tolerant wide-area location and rout-

ing. Technical Report UCB/CSD-01-1141, UC Berkeley,

Berkeley, California, April 2001.

6


