
HotComments: How to Make Program Comments More Useful?

Lin Tan, Ding Yuan and Yuanyuan Zhou
Department of Computer Science, University of Illinois at Urbana-Champaign

{lintan2, dyuan3, yyzhou}@cs.uiuc.edu

Abstract

Program comments have long been used as a com-
mon practice for improving inter-programmer communi-
cation and code readability, by explicitly specifying pro-
grammers’ intentions and assumptions. Unfortunately,
comments are not used to their maximum potential, as
since most comments are written in natural language, it
is very difficult to automatically analyze them. Further-
more, unlike source code, comments cannot be tested.
As a result, incorrect or obsolete comments can mislead
programmers and introduce new bugs later.

This position paper takes an initiative to investigate
how to explore comments beyond their current usage.
Specifically, we study thefeasibility andbenefitsof au-
tomatically analyzing comments to detect software bugs
and bad comments. Our feasibility and benefit analysis
is conducted from three aspects using Linux as a demon-
stration case. First, we study comments’ characteristics
and found that a significant percentage of comments are
about “hot topics” such as synchronization and memory
allocation, indicating that the comment analysis may first
focus on hot topics instead of trying to “understand” any
arbitrary comments. Second, we conduct a preliminary
analysis that uses heuristics (i.e. keyword searches) with
the assistance of natural language processing techniques
to extract information from lock-related comments and
then check against source code for inconsistencies. Our
preliminary method has found 12 new bugs in the lat-
est version of Linux with 2 already confirmed by the
Linux Kernel developers. Third, we examine several
open source bug databases and find that bad or incon-
sistent comments have introduced bugs, indicating the
importance of maintaining comments and detecting in-
consistent comments.

1 Introduction

1.1 Motivation
Despite costly efforts to improve software-development
methodologies, software bugs in deployed code continue
to thrive, contributing to a significant percentage of sys-
tem failures and security vulnerabilities. Many soft-
ware bugs are caused bymiscommunicationamong pro-
grammers, misunderstanding of software components,
and careless programming. For example, one program-

mer who implements functionFoo() may assume that
the caller ofFoo holds a lock or allocates a buffer be-
fore callingFoo. However, if such assumptions are not
clearly specified, other programmers can easily violate
them, introducing bugs.

The problem above is further worsened by software
evolution and growth. Typically, industrial and open
source software are written by numerous developers over
long periods of time, e.g. more than 10 years, with pro-
grammers frequently joining and departing the software
development process. As a result, miscommunication
and misunderstanding become increasingly severe, sig-
nificantly affecting software quality and productivity.

To address the problem, comments have been used
as a standard practice in software development to in-
crease the readability of code by expressing program-
mers’ intentions in a moredirect, explicit, and easy-to-
understand, but less precise (i.e. ambiguous) way. Com-
ments are written in natural language to explain code
segments, to specify assumptions, to record reminders,
etc., that are often not expressed explicitly in source
code. For example, the functiondo acct process()
in Linux Kernel 2.6.20 assumes that it is only called from
do exit() ; otherwise it may lead to failure. Fortu-
nately, this assumption is stated in the source code com-
ments, so other programmers are less likely to violate
this assumption. Similarly, the comment above function
reset hardware() states that the caller must hold
the instance lock before callingreset hardware() .
Such comments are very common in software including
Linux and Mozilla (as shown later in this paper).

Though comments contain valuable information, in-
cluding programmers’ assumptions and intentions, they
are not used to their maximum potential. Even though
they significantly increase software readability and im-
prove communication among programmers, they have
not been examined by compilers or program analysis
tools, such as debugging tools. Almost all compilers and
program analysis tools simply skip the comments and
parse only the source code.

If compilers and static analysis tools could automati-
cally extract information such as programmers’ assump-
tions described above, the extracted information could
be used to check source code for potential bugs. For ex-
ample, ifdo acct process() is called from a func-

tion other thando exit() , or if the instance lock is not
acquired before callingreset hardware() , it may
indicate a bug. The compilers and static analysis tools
could detect such bugs automatically by comparing the
source code and the assumptions extracted from com-
ments if they could automatically extract such assump-
tions.

While comments can help programmers understand
source code and specify programmers’ assumptions and
intentions in an explicit way,bad or obsolete comments
can negatively affect software quality by increasing the
chance of misunderstanding among programmers. In
practice, as software evolves, programmers often for-
get to keep comments up to date. These obsolete com-
ments, no longer consistent with the source code, provide
confusing, misleading and even incorrect information to
other programmers, which can easily introduce new bugs
later. Unlike source code that can be tested via various
in-house testing tools, comments can not be tested by
current tools. Therefore, if comments could be automat-
ically analyzed and checked against source code for in-
consistencies, such bad comments may be identified to
avoid introducing new bugs.

Unfortunately, automatically extracting information
from comments is very challenging [20] because com-
ments are written in natural language, may not even be
grammatically correct, and are a mixture of natural lan-
guage phrases and program identifiers. Moreover, many
phrases in software have different meanings from natural
language. For example, the word “pointer” in software
is associated with “memory” and “buffer”. While nat-
ural language processing (NLP) techniques have made
impressive progress over the years, they are still lim-
ited to certain basic functionalities and mostly focus on
well written documents such as the Wall Street Journal or
other rigorous news corpus. Therefore, to automatically
understandcomments, it would require combining NLP
with other techniques such as program analysis, statis-
tics, and even domain-specific heuristics.

1.2 Contributions
This position paper takes the first initiative to study the
feasibility and benefitsof automatically analyzing pro-
gram comments to detect software bugs and bad com-
ments. Our feasibility and benefit analysis is conducted
from three aspects using Linux as a demonstration case:

• Are there hot topics in comments?To analyze com-
ments, we first need to understand their characteris-
tics. Our results show that, while different Linux mod-
ules have different hot topics, they also share com-
mon topics such as synchronization and memory al-
location. Specifically, 1.2-12.0% of comments (in dif-
ferent modules) in Linux are related to locks, and a
substantial percentage (3.8-17.0%) of comments are

about memory allocation. These results indicate that
instead of aiming for the prohibitively challenging task
of understanding any arbitrary comments, we can fo-
cus our comment analysis on automatically extracting
information related to only hot topics.

• Are comments useful for detecting bugs?Comments
provide anindependentand more explicit source of
information compared to source code, and this infor-
mation can be used to perform sanity (consistency)
checks against source code for potential bugs or bad
comments. As a proof of concept, we conduct a
preliminary analysis that uses heuristics (i.e. key-
word searches) with the assistance of basic natural
language processing techniques to extract information
from lock-related comments. We choose the lock topic
as our demonstration case as it is one of the major top-
ics in comments, and synchronization bugs can cause
severe damage that is difficult to detect. In our prelim-
inary results, comments helped us find 12 new bugs
in Linux, with 2 confirmed by the Linux developers,
demonstrating some promising results to motivate the
research direction of automatic comment analysis.

• Are bad comments causing harm in practice?
While it is conceivable that bad comments can mislead
programmers, have they introduced new bugs in prac-
tice? Our preliminary bug reports examination finds
that inconsistent comments did introduce new bugs in
real world software such as Mozilla. This indicates
that it is important for programmers to maintain com-
ments and keep them up to date and consistent with
code; and it is also highly desirable to automatically
detect bad and inconsistent comments to avoid mis-
leading programmers and introducing new bugs later.
Moreover, we analyze several bug databases and find
that at least 62 bug reports in FreeBSD [3] are about in-
correct and confusing comments, implying that some
programmers have already realized the harm that can
be caused by bad comments.

2 Hot Topics of Comments
To find out whether program comments have “hot top-
ics”, we conduct a simple keyword frequency study on
Linux’s comments. In our analysis,a commentis defined
as one comment sentence.

Table 1 shows the most frequently used keywords,hot
keywords, in comments from five major Linux modules.
As expected, many hot topics are module specific. For
example, a substantial percentage of comments in the
kernel modules contain keywords “signal”, “thread”, or
“cpu”, whereas many comments in the memory manage-
ment module contain keywords “page” or “cache”.

Interestingly, while different Linux modules have their
own hot keywords, they share some common hot key-
words such as “lock”, “alloc” and “free”. For example,

kernel mm arch drivers fs
keyword % Freq keyword % Freq keyword % Freq keyword % Freq keyword % Freq

signal 8.1% 109 page 30.6% 331 bit 5.4% 2729 device 4.1% 6828 block 4.4% 3174
thread 7.7% 104 cache 11.2% 121 interrupt 5.2% 2650 data 3.7% 6129 inode 3.4% 2407
cpu 7.0% 94 map 10.3% 111 register 4.2% 2121 interrupt 3.6% 6093 file 2.9% 2069

process 6.8% 92 memory 9.8% 106 address 3.3% 1661 bit 3.1% 5260 buffer 2.3% 1680
kernel 6.8% 91 alloc 9.6% 104 copyright 3.2% 1616 register 3.1% 5163 page 2.1% 1470
lock 6.2% 83 lock 7.4% 80 pci 3.1% 1561 command 3.0% 5023 alloc 2.0% 1413
task 5.9% 79 free 7.4% 80 kernel 2.9% 1489 buffer 3.0% 4989 free 1.8% 1322
timer 4.7% 63 swap 6.8% 73 irq 2.9% 1452 driver 2.9% 4836 directori 1.5% 1108
check 4.5% 61 start 6.2% 67 lock 1.5% 1082
time 4.4% 59 mm 5.6% 60 lock 0.8% 384 lock 0.8% 1385 pointer 1.5% 1055

Table 1:Keyword frequency in Linux. % is calculated as the number of comments in a module containing the keyword over the
total number of comments in the module. Freq is keyword frequency.

kernel mm arch drivers fs
% Freq % Freq % Freq % Freq % Freq

10.0% 135 12.0% 130 1.2% 600 1.2% 1983 2.3% 1667

Table 2:Lock-related keyword frequency in Linux. Noise such as “block” and“clock” is excluded.

0.8% to 7.4% of the comments in Linux, a total of 3014
comments, contain the word “lock”. This is probably
because often Linux code is reentrant and thereby re-
quires locks to protect accesses to shared variables. As
synchronization-related code is usually complicated and
tricky with many assumptions, programmers commonly
use comments to make the synchronization assumptions
and intentions explicit.

Different keywords, e.g. lock, unlock, spinlock, and
rwlock, are all about locks; however, they are considered
separate keywords. Therefore, we improved our key-
word rank techniques to find lock-related comments. We
replace all lock-related keywords with “lock” and then
count the total number of comments that contain “lock”.
The results are shown in Table 2. The percentage of com-
ments that contain “lock” is then increased to 1.2-12.0%.

Similarly, keywords related to memory allocation and
deallocation also appear in a significant portion of com-
ments, 3.8% and 17.0% in thefs module and themm
module, respectively. This is because memory manage-
ment is another important topic that requires developers
to communicate with each other. Miscommunication can
easily lead to memory related bugs, which can be ex-
ploited by malicious users to launch security attacks.

While so far we have studied comments only from
Linux code, we believe that our results represent com-
ments of most system software including operating sys-
tem code and server code, because synchronization and
memory allocation/deallocation are important yet error-
prone and confusing issues for such software.

3 Comment Analysis
As a proof of concept, we conduct a preliminary study
that combines natural language processing techniques
and topic-specific heuristics to analyze synchronization-

related comments in Linux and use the extracted infor-
mation to detect comment-code inconsistencies. As the
goal of this position paper is merely to motivate the re-
search of automatic comment analysis by demonstrating
its feasibility and potential benefits, the comment anal-
ysis in this paper is heuristic-based and cannot be used
to extract comments of arbitrary topic—achieving such
goal remains as our immediate future work.

3.1 Analysis Goals
As a feasibility study to demonstrate the benefit poten-
tial, the analysis in our preliminary study focuses on ex-
tracting lock-related programming rules. Specifically,
the goal of our analysis is to extract lock-related infor-
mation (referred to as “rules” in this paper) according to
the eight templates listed in Table 3. These templates
are designed based on our manual examination of com-
ment samples from Linux. Some comments have posi-
tive forms such as “the lock must be held here”, whereas
some others are negative such as “the lock must not be
held here”. Therefore, the automatic comment analysis
needs to differentiate negative and positive forms. Oth-
erwise, it will badly mislead the sanity checks.

In addition to determining to which template a lock-
related comment belongs, we need to find the specific
parameter values, i.e. which lock is needed.

ID Rule Template
1/2 L must (NOT) be held [for V] before entering F.
3/4 L must (NOT) be held [for V] before leaving F.
5/6 LA must (NOT) be held [for V] beforeLB .
7/8 L must (NOT) be held here.

Table 3: Example rule templates. Each row shows two rule
templates, one positive and one negative. L denotes a lock. F
is a function. V means a variable. Brackets ([]) denote optional
parameters.

3.2 Analysis Process
To automatically understand what type of lock-related
rule a comment contains is a challenging task. The rea-
son is that the same rule can be expressed in many dif-
ferent ways. For example, the rule“Lock L must be held
before entering function F”can be paraphrased in many
ways, such as (selected from comments in Linux): (1)
“We need to acquire the write IRQ lock before calling
ep unlink()” ; (2) “The queue lock with interrupts dis-
abled must be held on entry to this function”; (3) “Caller
must hold bond lock for write.”Therefore, to analyze
comments, we need to handle various expressing forms.

A Simple Method. A simple method is to use some
heuristics such as “grep” to search for certain keywords
in comments. For example, we can first grep for com-
ments that contain keyword “lock” to obtain all lock-
related comments. We then look for action keywords
“acquire”, “hold”, or “release” or their variants such as
“acquired”, “held” and “releasing”. Afterward, we look
for negation keywords such as “not”, “n’t”, etc. to differ-
entiate negative rules from positive ones.

While the method is simple and can narrow down the
number of comments for manual examination, it is very
inaccurate because it considers only the presence of a
keyword, regardless where in the comment the keyword
appears. The simple approach will makemistakesin at
least the following three cases. First, if the action key-
word is not in the main clause, the sentence may not
contain an expected rule. For example, comment “re-
turns -EBUSY if locked” from Linux does not specify a
locking rule since “if locked” is acondition for the re-
turn value. Second, if the object of the action verb is not
a lock, maybe no locking rule is contained. For exam-
ple, a comment from Linux “lockdup is waiting for us
to startup, so will be holding a reference to this module,
...” contains “lock” and “hold”, but the object of “hold”
is not a lock, and no expected rule is contained. Third, a
comment containing the keyword “not” does not neces-
sarily imply the extracted rule is negative. For instance,
“Lock L must be held before calling function F so that a
data race will not occur”, still expresses a positive rule.

Our Preliminary Method. To accurately analyze
comments for lock-related rules, we extend the simple
methods above with systematic natural language pro-
cessing (NLP) techniques to analyze comment structures
and word types.

We first break each comment into sentences, which is
non-trivial as it involves correctly interpreting abbrevia-
tions, decimal points, etc. Moreover, unique to program
comments is that sentences can have ‘*’, ‘/’ and ‘.’ sym-
bols embedded in one sentence. Furthermore, sometimes
a sentence can end without any delimiter. Therefore, be-
sides using the regular delimiters, ‘!’, ‘?’, and ‘;’, we use

‘.’ and spaces together as sentence delimiters instead of
using ‘.’ alone. Additionally, we consider an empty line
and the end of a comment as the end of a sentence.

Next, we use a modified version of word splitters [7]
to break a sentence into words. We then use Part-of-
Speech (POS) tagging and Semantic Role Labeling tech-
niques [7] to tell whether a word in a sentence is a verb, a
noun, etc., to distinguish main clauses from sub clauses,
and to tell subjects from objects.

Then we apply keyword searches on selected com-
ponents of each comment. Specifically, we first search
for keyword “lock” in themain clauseto filter out those
lock-unrelated comments. Then we check whether the
keyword “lock” serves as theobject of the verb or the
subjectin the main clause, and whether theverb of the
main clause is “hold”, “acquire”, “release”, or their vari-
ants. By applying these searches on the most relevant
components, we can determine whether the comment
contains a lock-related rule or not.

Finally, we determine the following information to
generate the rule in one of the forms presented in Table 3.

Is the rule specific to a function? If we see words
such as “call” or “enter function” in a sentence, then it
is highly likely that the rule contained in the target com-
ment is specific to a function associated with the com-
ment (Template 1 - 4 in Table 3). In this case, we can
automatically extract the function name from the source
code. The intuition here is that a comment about a func-
tion is usually inserted at the beginning of the function.
Therefore, a simple static analysis can easily find the
name of the function defined right after the comment.

What is the lock name? The lock name of a rule is
usually the object of the verb in the main clause, which
is often explicitly stated in comments. Therefore, we can
automatically extract it as our NLP tools can tell which
word is the object.

Is the rule positive or negative? By identifying the
verb and negation words, such as “not”, we can deter-
mine whether the rule is positive (template 1, 3, 5, or 7)
or negative (template 2, 4, 6, or 8). For example, a main
clause containing verb “hold” without any negation word
is likely to be positive, whereas a main clause containing
verb “hold” with a negation word is likely to be negative.

Our analysis algorithm is still primitive and is now de-
signed for lock-related comments, and we are in the pro-
cess of improving its accuracy and flexibility to analyze
comments of any topic selected by users.

3.3 Inconsistency Detection
After we extract the lock related rules, we scan the source
code to detect comment-code inconsistencies. Our anal-
ysis is flow-sensitive and context-sensitive. For exam-
ple, if a rule extracted from comments says that a lock
L should be held before calling function F, our checker

drivers/pci/proc.c:
static void *pci_seq_start(…){

…
/*surely we need some locking
for traversing the list?/
while (n--)

{p = p->next; …}
…

}

drivers/scsi/in2000.c:
/*Caller must hold instance lock!*/
static int reset_hardware(…){…}
…
static int in2000_bus_reset(…){

…
reset_hardware(…);
…

}

nsCRT.h:
//must use delete[] to free memory
//allocated by PR_strdup
static PRUnichar* PR_strdup(…);
…
nsComponentManager.cpp:
buf = PR_strdup();
…
delete [] buf;

Quote from Bug Report 172131
in Mozilla Bugzilla:

“nsCRT.h's comment suggests the
wrong De-allocator.

nsComponentManager.cpp actually
uses the wrong De-allocator.”

(a) The comment says that
reset hardware() must
be called with the instance
lock held, but no lock is ac-
quired before calling it in the
code.

drivers/pci/proc.c:
static void *pci_seq_start(…){

…
/*surely we need some locking
for traversing the list?/
while (n--)

{p = p->next; …}
…

}

drivers/scsi/in2000.c:
/*Caller must hold instance lock!*/
static int reset_hardware(…){…}
…
static int in2000_bus_reset(…){

…
reset_hardware(…);
…

}

nsCRT.h:
//must use delete[] to free memory
//allocated by PR_strdup
static PRUnichar* PR_strdup(…);
…
nsComponentManager.cpp:
buf = PR_strdup();
…
delete [] buf;

Quote from Bug Report 172131
in Mozilla Bugzilla:

“nsCRT.h's comment suggests the
wrong De-allocator.

nsComponentManager.cpp actually
uses the wrong De-allocator.”

(b) The comment states
that a lock is needed when
the list is traversed. But
there is no lock acquisition
in the code.

Figure 1:Two confirmed bug examples in Linux.

performs a static analysis from every root (without any
caller, e.g.main()) of the call-graph to explore every
path that may lead to function F to see if it acquires lock
L before calling F. To improve efficiency, we first prune
the control flow graph and call graph and only keep those
nodes that are related to lock acquire, L, or function F.
We also perform simple points-to analysis to handle vari-
ables that may be aliases of L. The details of our rule
checkers are similar to [13, 16].

Although we use static checking to detect bugs, it is
quite conceivable that rules extracted from comments
can be checked dynamically by running the program.

3.4 Results: New Bugs Detected
We conducted a preliminary evaluation of the analysis on
Linux, which automatically extracted 538 lock-related
rules from five Linux modules shown below.

kernel mm arch drivers fs
29 16 50 263 180

We detected 12 bugs in Linux with 2 confirmed by
developers by using 137 rules extracted from com-
ments, and we are working on checking the rest of
the rules. Figure 1(a) shows a confirmed bug in
Linux. The comment abovereset hardware()
states that the caller must hold the instance lock, but
the lock is not acquired when the function is called
from in2000 bus reset() , which can cause
data races. This bug was fixed in Linux by adding
spin lock irqsave(instance- >host lock,
flags) . As shown in Figure 1(b), a comment says a
lock is needed to traverse the list. However, no lock is
used for accessing the list in the code. This bug was
fixed by adding proper locking for accessing the list.

4 Bad Comments
If we can automatically detect bad comments, we can
help prevent these bad comments from confusing and
misleading programmers, who consequently introduce
bugs. In this feasibility study, we manually study bug
reports from several Bugzilla databases to find out if bad
comments have caused new bugs.

drivers/pci/proc.c:
static void *pci_seq_start(…){

…
/*surely we need some locking
for traversing the list?/
while (n--)

{p = p->next; …}
…

}

drivers/scsi/in2000.c:
/*Caller must hold instance lock!*/
static int reset_hardware(…){…}
…
static int in2000_bus_reset(…){

…
reset_hardware(…);
…

}

nsCRT.h:
//must use delete[] to free memory
//allocated by PR_strdup
static PRUnichar* PR_strdup(…);
…
nsComponentManager.cpp:
buf = PR_strdup();
…
delete [] buf;

Quote from Bug Report 172131
in Mozilla Bugzilla:

“nsCRT.h's comment suggests the
wrong De-allocator.

nsComponentManager.cpp actually
uses the wrong De-allocator.”

Figure 2: Bad comments that caused a new bug in Mozilla.
Code is modified to simplify illustration.

Such a real world bug example from Mozilla (Revision
1.213 of nsComponentManager.cpp) is shown in Fig-
ure 2. This bug was introduced because the programmer
read and followed an incorrect comment, as indicated by
the description in the Bugzilla bug report:“nsCRT.h’s
comment suggests the wrong De-allocator. nsCompo-
nentManager.cpp actually uses the wrong De-allocator”.
Misled by the incorrect comment, “must usedelete[]
to free the memory”, a programmer useddelete[] to
free the memory pointed bybuf , resulting in a bug as
reported to Mozilla’s Bugzilla database [6]. In a later
version (Revision 1.214 of nsComponentManager.cpp),
this bug was fixed by replacingdelete[] buf with
PR free(buf) . The incorrect comment has also been
fixed accordingly (in file nsCRT.h).

Moreover, we found that at least 62 bug reports in
FreeBSD [3] are about incorrect and confusing com-
ments, indicating that some programmers have realized
the importance of keeping comments updated.

5 Related Work

Extracting rules and invariants from source code.
Many bug detection tools [10, 11, 16] have been pro-
posed to extract rules or invariants from source code
or execution traces to detect bugs. Unlike these tools,
our study automatically extracts programming rules from
comments. Our approach also allows the detection of bad
comments that can introduce bugs later.

Empirical study of comments. Woodfield, Dunsmore
and Shen [19] conducted a user study on forty-eight ex-
perienced programmers and showed that code with com-
ments is likely to be better understood by programmers.
Jiang and Hassan [15] studied the trend of the percentage
of commented functions in PostgreSQL. Recent work
from Ying, Wright and Abrams [20] shows that com-
ments are very challenging to analyze automatically be-
cause they have ambiguous context and scope. None of
these propose any solution to automatically analyze com-
ments or detect comment-code inconsistencies.

Annotation language. Annotation languages [4, 9, 12,
14, 21] are proposed for developers to comment source
code using a formal language to specify special informa-
tion such as type safety [21]. Previous work titled “com-
ment analysis” [14] automatically detects bugs caused

by wrong assumptions made by programmers. However,
what they refer to as “comments” are essentially annota-
tions written in a formal annotation language, not com-
ments written in natural language that are used in most
existing software and are analyzed in our work.

While these annotation languages can be easily an-
alyzed by a compiler, they have their own limitations.
First, these annotation languages are not as expressive or
flexible as natural language, often only expressing sim-
ple assumptions such as buffer lengths and data types.
Additionally, they are not widely adopted because de-
velopers are usually reluctant to learn a new language.
Finally, millions of lines of comments written in natural
language already exist in legacy code. Due to all these
reasons, our approach well compliments the annotation
language approach since we analyze general comments
written in natural language. Rules inferred by our ap-
proach from comments can also be used toautomatically
annotate programs to reduce manual effort.

Automatic document generation from comments.
Many comment style specification tools are proposed
and are widely used to automatically build documenta-
tion from comments [1, 2, 5, 8]. Since these specification
tools restrict only the format but still allows program-
mers to use natural language for the content (i.e. they are
semi-structured like web pages), automatically “under-
standing” or analyzing these comments still suffers from
similar challenges to analyzing unstructured comments.

Comment and document analysis for software reuse.
Matwin and Ahmad [18] used natural language process-
ing techniques to extract noun phrases from program
comments in LINPACK (a linear algebra package) to
build a function database so that programmers can search
the database to find routines for software reuse. Another
study [17] built a code library by applying information
retrieval techniques on documents and comments. But
none of these work attempts to “understand” the infor-
mation contained in comments to automatically checked
against code for inconsistencies.

6 Conclusions and Future Work
In this paper, we study the feasibility and benefits of au-
tomatically analyzing comments to detect software bugs
and bad comments. Our preliminary results with real
world bugs and bad comment examples have demon-
strated the benefits of such new research initiative. We
are in the process of continuing exploring this idea in sev-
eral ways. First, we are improving the accuracy andgen-
erality of our comment analysis algorithm. Second, we
are applying our algorithm to extract other types of rules
such as memory-related rules, to detect other types of
bugs, and to detect bad comments. Third, we are study-
ing the characteristics of comments from other software

to validate that our observations from Linux comments
are representative. So far, our examinations of Mozilla
and Apache have shown results similar to Linux.

7 Acknowledgments
We thank the anonymous reviewers for their useful feed-
back and the Opera group for useful discussions and pa-
per proofreading. This research is supported by NSF
CNS-0347854 (career award), NSF CCR-0325603 grant,
DOE DE-FG02-05ER25688, and Intel gift grant.

References

[1] C# XML comments.
http://msdn.microsoft.com/msdnmag/issues/02/06/XMLC/.

[2] Doxygen. http://www.stack.nl/˜ dimitri/doxygen/.
[3] FreeBSD problem report database.

http://www.freebsd.org/support/bugreports.html.
[4] Java annotations. http://java.sun.com/j2se/1.5.0/docs/guide/

language/annotations.html.
[5] Javadoc tool. http://java.sun.com/j2se/javadoc/.
[6] Mozilla Bugzilla database. https://bugzilla.mozilla.org/.
[7] NLP tools. http://l2r.cs.uiuc.edu/˜ cogcomp/tools.php.
[8] RDoc. http://rdoc.sourceforge.net/.
[9] SAL annotations. http://msdn2.microsoft.com/en-

us/library/ms235402.aspx.
[10] D. R. Engler, D. Y. Chen, S. Hallem, A. Chou, and

B. Chelf. Bugs as deviant behavior: A general approach
to inferring errors in systems code. InSOSP ’01.

[11] M. Ernst, A. Czeisler, W. Griswold, and D. Notkin.
Quickly detecting relevant program invariants. In
ICSE’00.

[12] D. Evans and D. Larochelle. Improving security using ex-
tensible lightweight static analysis.IEEE Software, 2002.

[13] S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system
and language for building system-specific, static analyses.
In PLDI’02.

[14] W. E. Howden. Comments analysis and programming er-
rors. IEEE Trans. Softw. Eng., 1990.

[15] Z. Jiang and A. Hassan. Examining the evolution of code
comments in PostgreSQL. InMSR ’06.

[16] Z. Li and Y. Zhou. PR-Miner: Automatically extract-
ing implicit programming rules and detecting violations
in large software code. InFSE’05.

[17] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An infor-
mation retrieval approach for automatically constructing
software libraries.IEEE Trans. Softw. Eng., 1991.

[18] S. Matwin and A. Ahmad. Reuse of modular software
with automated comment analysis. InICSM ’94.

[19] S. Woodfield, H. Dunsmore, and V. Shen. The effect of
modularization and comments on program comprehen-
sion. InICSE’81.

[20] A. Ying, J. Wright, and S. Abrams. Source code that talks:
An exploration of Eclipse task comments and their impli-
cation to repository mining. InMSR’05.

[21] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals,
M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe
and recoverable extensions using language-based tech-
niques. InOSDI’06.

