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Abstract

System configuration management is difficult because
systems evolve in an undisciplined way: packages are
upgraded, configuration files are edited, and so on. The
management of existing operating systems is strongly
imperative in nature, since software packages and con-
figuration data (e.g., /bin and /etc in Unix) can be seen as
imperative data structures: they are updated in-place by
system administration actions. In this paper we present
an alternative approach to system configuration manage-
ment: a purely functional method, analogous to lan-
guages like Haskell. In this approach, the static parts
of a configuration — software packages, configuration
files, control scripts — are built from pure functions,
i.e., the results depend solely on the specified inputs of
the function and are immutable. As a result, realising a
system configuration becomes deterministic and repro-
ducible. Upgrading to a new configuration is mostly
atomic and doesn’t overwrite anything of the old config-
uration, thus enabling rollbacks. We have implemented
the purely functional model in a small but realistic Linux-
based operating system distribution called NixOS.

1 Introduction

A system configuration is the composition of artifacts
necessary to make computer systems performs their in-
tended functions. Managing the configuration of a sys-
tem is difficult because there are typically thousands of
these interrelated artifacts that together make up a sys-
tem (such as software packages, configuration data, and
control scripts), and we need to manage the evolution of
such a configuration.

Figure 1 shows a very small subset of the various kinds
of artifacts that make up a simple Linux system run-
ning an OpenSSH server and Apache (providing access
to Subversion repositories). Boxes denote software com-
ponents (including scripts), solid ellipses denote configu-
ration files, and dashed ellipses are conceptual groupings
of configuration aspects. An arrow a → b indicates that
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Figure 1: A small subset of a system configuration

system component a has some kind of reference to com-
ponent b, be it a dynamic linker dependency, a line in a
configuration file, and so on.

In this paper we argue that existing configuration man-
agement tools — ranging from package managers such
as RPM [7] to configuration tools such as Cfengine [2]
— have an imperative model in a sense analogous to im-
perative programming languages such as C. That is, con-
figuration actions such as upgrading a package or modi-
fying a configuration file are stateful: they depend on and
transform the state of the system.

Statefulness has a number of serious consequences:

• No traceability: if a configuration is the result of a se-
quence of imperative actions over time (some of which
may have been performed manually), then there may
not be a record of these actions that allows the con-
figuration to be recreated on an empty machine. As a
result, it is hard to reproduce configurations.

• No predictability: if a configuration action depends
on an ill-defined initial state, then the end result may
be unpredictable. This is why upgrading an operating
system is so much more error-prone than reinstalling
it: the upgrade action transforms a poorly defined ini-
tial state, the result often being equally poorly defined,



while the installation action starts from a well-defined
initial state.

• Inability to run multiple configurations side-by-side.
For instance, if we want to test some modification to
the Apache server in Figure 1, then we could of course
modify the httpd.conf of the production instance to run
on a different port. But this would affect the pro-
duction instance as well. Instead, we should copy
httpd.conf, but this propagates through the dependency
graph; for instance, we also would have to copy the
Apache service script to refer to the new httpd.conf.

• A special instance of the previous problem is the in-
ability to roll back the system to a previous configura-
tion. For instance, if we upgrade a set of RPM pack-
ages and the upgrade turns out to be less than desir-
able, then undoing the change is hard: we would have
to revert to backups (but it may not be clear which files
to restore) or install the previous RPM packages (if we
know which ones!). Likewise, if we make a bad modi-
fication to a configuration file, we’d better have the file
under version control to revert the change.

Analogous problems exist in imperative programming
languages, such as the inability to reason about the re-
sult of function calls due to global variables or I/O.
This was an important motivation for the development
of purely functional programming languages [11] like
Haskell [12]. In those languages, the result of a function
call only depends on the inputs of the function, and val-
ues are immutable. This makes it easier to reason about
the behaviour of a program. For instance, two function
calls f (x) and f (y) can never interfere with each other
(e.g., because of mutable global variables or I/O), and
x = y implies f (x) = f (y). This property is known as
referential transparency [11], and it is what is lacking
in conventional system configuration tools. For instance,
when a configuration file such as sshd config has a ref-
erence to some path, say /usr/X11/bin/xauth, then the ref-
erent (the file being pointed to) is not constant. Thus a
configuration action in one corner of the system (such as
uninstalling xauth) can affect the behaviour in another.
This is what causes problems such as the “DLL hell”.

In this paper, we show that it is possible to do system
configuration management in a purely functional way.
This means that the static parts of a configuration (soft-
ware packages, configuration files, control scripts) are
built from pure functions and never change after they
have been built. This has a number of advantages:

• A configuration can be realised (built) deterministi-
cally from a single formal description. This also

means that a configuration can be reproduced easily
on another machine.

• Upgrading a configuration is as safe as installing from
scratch, since the realisation of a configuration is not
stateful.

• Configuration changes are not destructive. As a result,
we can always roll back to a previous configuration
that has not been garbage collected yet.

To show that a purely functional model is feasible,
we have implemented a small but realistic Linux-based
operating system distribution called NixOS, built on the
purely functional package management system Nix. In
NixOS, all static parts of the system are stored as im-
mutable “values” under paths such as

/nix/store/2m732xrk...-apache-2.2.3

where 2m732xrk... is a cryptographic hash of the inputs
involved in building the value. Aside from a single ex-
ception, there is no /bin, /usr, /lib, etc. in this system,
and /etc consists almost entirely of symlinks to gener-
ated configuration files in /nix/store. The remainder of
this paper shows the basic principles behind NixOS.

2 Purely functional package management

NixOS is based on Nix, a purely functional package man-
agement system [5, 6]. Nix expressions describe how to
build immutable software packages from source. For in-
stance, the following Nix expression is a function that
builds Apache:

{stdenv, openssl}:

stdenv.mkDerivation {
name = "apache-2.2.3";
src = fetchurl {
url = http://.../httpd-2.2.3.tar.bz2;
md5 = "887bf4a85505e97b...";

};
buildCommand = "
tar xjf $src
./configure --prefix=$out \
--with-openssl=${openssl}

make; make install";
}

Here, stdenv and openssl are function arguments repre-
senting dependencies of Apache (stdenv is a standard
build environment: GCC, Make, etc.). When the func-
tion is called, it builds a derivation, which is an atomic
build action. In this case, the build action unpacks,
configures, compiles and installs Apache. All attributes



specified in the derivation (such as src) are passed to the
builder through environment variables. The out environ-
ment variable contains the target path of the package,
discussed below. Dependencies such as src, stdenv and
openssl are recursively built before Apache’s derivation
is built.

To build a concrete Apache instance, we write an ex-
pression that calls the function:

apache = import ./apache.nix {
inherit stdenv openssl;

}
stdenv = ...;
openssl = ...;

That is, the file containing the Apache function is im-
ported and called with specific instances of stdenv and
openssl, which are defined similarly. (inherit simply
copies the values of stdenv and openssl from the sur-
rounding lexical scope. The details of the language aren’t
very important here; the interested reader is referred
to [5].) The user can now do

$ nix-env -f all-packages.nix -i apache

to install the Apache package.
The Nix expression language happens to be purely

functional, but what really matters is that the stor-
age of packages is also purely functional. Pack-
ages are built in the Nix store, a designated part of
the file system, typically /nix/store. Each package is
stored separately under a name that contains a 160-bit
cryptographic hash of the inputs involved in building
the package, e.g., /nix/store/5lbfaxb7...-openssl-0.9.8d
or /nix/store/2m732xrk...-apache-2.2.3. This location is
passed to the build script through the out environment
variable. As a result, any change to any input causes
a different path, so if we build the Nix expression, the
package will be rebuilt in a different path in the store.
Any previous installations of the package are left un-
touched, and so we prevent problems like the “DLL
hell”. On the other hand, if the path already exists, then
we can safely skip rebuilding it.

Packages are made read-only after they have been
built. This is why the Nix store can be called purely func-
tional: the cryptographic hash in the path of a package is
defined by the inputs to the package’s build process, and
the contents never change; thus there is a unique cor-
respondence between the hash and the contents. This
scheme has several important advantages [6], such as
preventing undeclared build time dependencies, allow-
ing detection of runtime dependencies, and allowing au-
tomatic garbage collection of unused packages.

/nix/store
068q49fhc600...-sshd

etc/event.d
ssh (Upstart job)

lahm12vmh052...-sshd config
r1k7gb1capq0...-xauth-1.0.2

bin
xauth

im276akmsrhv...-glibc-2.5
lib

libc.so.6
l9w6773m1msy...-openssh-4.6p1

sbin
sshd

Figure 2: Paths in the Nix store related to the SSH service

3 System configuration management

We can quite naturally extend purely functional pack-
age management to purely functional system configura-
tion management, simply by treating the other parts of a
configuration — such as configuration files and control
scripts — as packages.

For instance, consider the configuration file for the
sshd daemon, sshd config. We can make a trivial Nix
expression that builds it in the Nix store:

{stdenv, xauth}:
stdenv.mkDerivation {
name = "sshd_config";
buildCommand = "
echo ’X11Forwarding yes’ > $out
echo ’XAuthLocation \
${xauth}/bin/xauth ’ >> $out";

}

(The construct ${xauth} places the store path of the
xauth argument in the enclosing string. The actual im-
plementation in NixOS uses more sophisticated configu-
ration file templating mechanisms.)

In the same way that we built sshd config purely, we
can build all the other static parts that constitute a system,
such as the configuration in Figure 1. Thus there are Nix
expressions to build the kernel, the initial ramdisk (initrd)
necessary for providing boot-time modules required by
the kernel to mount the root file system, the boot scripts,
the Upstart jobs1, the X server plus its configuration, etc.

For example, the SSH service in Figure 1 is re-
alised through Nix expressions that build an Upstart

1Upstart is a event-based replacement for the classic /sbin/init (http://
upstart.ubuntu.com/). It’s responsible for running system startup scripts
and monitoring system daemons.



job that starts the SSH daemon, the SSH configuration
file, the OpenSSH and Xauth packages, and their soft-
ware dependencies such as the C library Glibc. The
results in the Nix store of building these expressions
are shown in Figure 2 (most software dependencies
are omitted). The arrows denote runtime dependen-
cies that arise from a value containing the path to an-
other value in the store. For instance, the generated
Upstart job contains a line /nix/store/l9w6773m1msy...-
openssh-4.6p1/sbin/sshd -f /nix/store/lahm12vmh052...-
sshd config, and so it has a runtime dependency on
OpenSSH and the configuration file.

There is also a top-level Nix expression, system.nix,
that builds the entire system configuration by calling the
individual expressions that build specific parts of the sys-
tem. The output of this expression is a package contain-
ing an activation script that makes the configuration the
current configuration of the system. For instance, it mod-
ifies the Grub startup menu so that the system will boot
with the new configuration the next time the system is
booted. The Grub menu also contains all previous con-
figurations that have not been garbage collected yet, al-
lowing the user to go back to old configurations very eas-
ily if there is a problem with the new configuration.

Of course, most configuration changes do not require
the system to be restarted. A nice property of NixOS’s
purely functional model is that it allows the activation
script to determine precisely which system services have
to be restarted, simply by comparing the store paths of
their Upstart job files. After all, due to the immutability
of files in the Nix store, if an Upstart job with a certain
name (e.g., sshd) has the same path in the new config-
uration as in the previous configuration, then it must be
the same.

When the user changes anything to a Nix expression,
she can realise the new configuration as follows:

$ nixos-rebuild switch

This builds system.nix, makes it the default configura-
tion for booting, and calls the resulting activation script.
Similarly, nixos-rebuild test builds and activates a config-
uration but does not make it the boot default. Thus, a
reboot suffices to recover from a crashing configuration.
Also, since the building of a new configuration is non-
destructive — it does not overwrite any existing files in
the store — the user can roll back to any previous con-
figuration (that has not been garbage collected yet) by
running its activation script.

An advantage of using a functional language is that
it is easy to abstract over configuration choices. Rather
than encoding those choices directly in a Nix expression,
they can be passed as function arguments to the expres-

{
boot = {
grubDevice = "/dev/hda";

};
fileSystems = [

{ mountPoint = "/";
device = "/dev/hda1";

}
];
swapDevices = ["/dev/hdb1"];
services = {
sshd = {
enable = true;
forwardX11 = true;

};
apache = {
enable = true;
subservices = {
subversion = {
enable = true;
dataDir = "/data/subversion";

};
};

};
};

}

Figure 3: A simple configuration specification

sion. For instance, whether to turn on X11 forwarding
for sshd can be passed as a function argument:

{stdenv, xauth, forwardX11}:
stdenv.mkDerivation {
name = "sshd_config";
buildCommand = "
${if forwardX11 then

"echo ’X11Forwarding yes’ > $out
echo ’XAuthLocation \
${xauth}/bin/xauth ’ >> $out"

else ""}";
}

This causes the line echo ’XAuthLocation ...’ to be in-
cluded in the build command only if forwardX11 is true.
This has the additional advantage that due to lazy eval-
uation (derivations are only built when they are actually
referenced), xauth is built only when forwardX11 is set.
This kind of optimisation follows from the integration of
package management and system configuration manage-
ment into a single formalism.

In the same vein, system.nix is a function that accepts
a configuration specification, which is a hierarchical set
of attributes specifying various system options. It passes
these options on to the appropriate Nix expressions, e.g.,



services.sshd.forwardX11 is passed on to the function
that builds the sshd service. Figure 3 shows a real ex-
ample of a configuration specification corresponding to
the configuration in Figure 1.

An important advantage of our approach is that since
the entire system configuration is expressed in a single
formalism, a user does not have to know how a specific
configuration choice is implemented. Regardless of the
configuration change that the user wants to perform —
upgrading to a new version of OpenSSH, changing an
sshd configuration option, upgrading to a new kernel,
adding or removing a file system or swap device — the
change is accomplished in the same way: one modifies
the configuration file (Figure 3) and reruns nixos-rebuild
to build and activate the configuration.

4 Evaluation

Does the purely functional approach work? That is, to
what extent can we eliminate the “global” namespace of
files in /etc, /bin and so on and replace them with purely
built, immutable files?

Quite well, in fact. NixOS is currently a somewhat
small but realistic Linux distribution. It builds on the
Nix Packages collection which contains some 850 Unix
packages. NixOS provides a Linux 2.6-based system,
networking, system services such SSH and Apache, an X
server, KDE and parts of Gnome. It works well enough
that it has replaced SUSE on the first author’s laptop. It
is also in use as a server OS on the build farms (auto-
mated software build systems) at Utrecht University and
the Technical University of Delft. (Nix is useful on such
systems as it manages the deployment of dependencies
to build machines and prevents undeclared dependencies
in software packages.)

Code With regard to software, NixOS has no /usr,
/sbin, or /lib. There is only one file in /bin: namely, a sym-
link /bin/sh to a Bash instance in the Nix store. This is
because many programs (such as Glibc’s system() func-
tion) hard-code the location of the shell. Of course, we
could patch all those programs, but instead we took the
pragmatic route — a slight concession to the purely func-
tional model. Apart from the symlink /bin/sh, all pack-
ages resides in the Nix store, and have no dependencies
on packages outside of the store. For example, once we
had NixOS bootstrapped with just the single /bin/sh com-
promise, we were able to build Mozilla Firefox and all its
dependencies all the way to Glibc and GCC purely. (De-
tails of the NixOS bootstrap can be found in [9].)

Static data How about configuration data in /etc? A
lot of configuration data can be “purified” easily. For in-

stance, a configuration file such as /etc/ssh/sshd config
can easily be generated in a Nix expression and used di-
rectly from the Nix store by also generating an Upstart
job that calls sshd with the appropriate -f argument to
specify the Nix store path of the generated sshd config.

However, there are some configuration files for which
this is either not possible (e.g., because the path is hard-
coded into binaries) or infeasible (because the configura-
tion cross-cuts the system). Examples are /etc/services
(well-known port numbers) and /etc/resolv.conf (DNS
configuration). We do generate those files in Nix expres-
sions, but the activation script of the configuration cre-
ates symlinks to them in /etc. The X11/KDE-based con-
figuration of the first author’s laptop has 24 symlinked
files and directories in /etc, a number that can probably
be reduced with little effort. This configuration, when
built, consists of 236 paths in the Nix store; its build-time
dependency graph consists of 532 build actions.

Mutable state Since files in the Nix store are im-
mutable, the purely functional approach only works for
the static parts of a configuration. Mutable state, such
as most everything in /var, falls outside the scope of this
approach. So mutable state isn’t modeled in Nix expres-
sions explicitly; rather, programs such as the activation
script, Upstart jobs or system daemons are responsible
for initialising the required state in /var at runtime.

Some files occupy a place between static configura-
tion and mutable state. A prominent example is the Unix
user account database, /etc/passwd. On the one hand,
it specifies static configuration such as the existence of
system accounts; on the other hand, passwords are dy-
namically modified at runtime by end users through com-
mands such as passwd. Currently, the activation script
ensures that the required accounts exist, but this is a state-
ful operation that depends on the previous contents of
/etc/passwd and therefore has all the problems associ-
ated with stateful updating. Fortunately, there are only 3
such files in the example configuration above.

Disk space The purely functional model has signifi-
cant disk space requirements. For instance, the 236 store
paths of the X11/KDE-based configuration above have
a total size of 656 MiB. This is not remarkable in it-
self, given that the configuration contains a kernel, an
X server, KDE, and many other packages. However, if
we make a change to this configuration, then in the worst
case — if every derivation is different — we need an-
other 656 MiB of disk space. In an imperative model,
the new configuration simply overwrites the old configu-
ration, and so no additional space is needed.

Fortunately, most configuration changes do not need
anywhere near that amount of space, as they only cause



“top level” configuration files and control scripts to be re-
built, taking up only a few kilobytes. However, the worst
case can occur, for instance if the C library or compiler
is changed (which are used by all other packages). This
is analogous to efficiency considerations for purely func-
tional data structures: it is inefficient to update the last
element of a Haskell list, but cheap to update the first el-
ement. Closures in the Nix store are purely functional
data structures, too, so it is cheap to update something
near the top of the dependency graph (e.g., configura-
tion files) but expensive to update things near the bottom
(e.g., the C library).

5 Related Work

Our work on NixOS is an extension of our previous
work on purely functional software deployment [6, 5].
We extended software deployment to service deployment
in [4]. The latter paper briefly discusses deploying dis-
tributed applications with Nix.

The Vesta configuration management system [10] has
a purely functional language for build management. It
should be possible to use this language to build system
configurations.

The need to make system configuration more declar-
ative has been felt by many. An approach inspired by
Vesta is suggested in [3]. The present work could be seen
as a realisation of that idea. Configuration tools such as
Cfengine [2] and LCFG [1] are declarative, but stateful.
For instance, Cfengine actions transform the current state
of the system.

While to our knowledge this is the first attempt
at purely functional system configuration management,
there have been operating systems written in a functional
language, such as House [8]. This is a rather orthogonal
issue; the system configuration of those OSes is managed
in a conventional way.

6 Conclusion

We have shown that it is possible to implement an oper-
ating system with a purely functional configuration man-
agement model, where all software packages and con-
figuration files are built from a formal description of the
system using pure functions and are never changed after
they have been built. Hudak [11] points out that people
unfamiliar with functional languages often find it hard
to believe that it is possible to live without assignments;
likewise, it may not be entirely obvious that one can man-
age an operating system without destructively updating
files. We have shown that this is in fact quite possible.

Initial experience with NixOS suggests that the approach
is also practical.

NixOS, including sources and ISO images for 32-bit
and 64-bit x86 machines, is available from http://nix.cs.
uu.nl/nixos.
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