
A Web based Covert File System

Arati Baliga, Joe Kilian and Liviu Iftode
Department of Computer Science

Rutgers University, Piscataway, NJ.
{aratib, jkilian, iftode}@cs.rutgers.edu

Abstract
We present the idea of a web based covert file system,
CovertFS. This file system allows a user to store files
covertly on media sharing websites while guaranteeing
confidentiality and plausible deniability regarding the ex-
istence of the files. Further, it allows for selective and
covert sharing of these files with other users. CovertFS
can be built on top of any web based media sharing
service. The files are hidden within the media using
steganographic techniques. The user can plausibly deny
the existence of the covert file system since the exis-
tence of it cannot be proven. The media sharing service
provider is oblivious to the existence of the file system
within the stored media, providing them plausible denia-
bility as well. Since the user files are completely hidden,
it gives only the user complete control over his confiden-
tial files.

1 Introduction
Web services such as email, photo sharing, video shar-
ing, blogs, wikis and other collaborative and interactive
services have become a part of our daily lives. The
web provides an easy and portable means for storing and
retrieving user content as well as sharing this content
within a group of people for online collaboration.

All web services available today are for open storage
and sharing, where the existence of the data is known
to the service provider. The fundamental, implicit as-
sumption here, is that the service provider can be com-
pletely trusted with the user data. Any content stored in
the clear on these servers is vulnerable to unauthorized
access by the service administrators. Further, the gov-
ernment could compel the service provider to turn over
this data without the knowledge of the user. A more cau-
tious user might encrypt all content that is stored on these
servers. While this protects the data from unauthorized
access, it cannot hide the fact that some data is stored

by a particular user. The user might be subsequently co-
erced into revealing the encryption keys by legal instru-
ments such as subpoenas. Thus, users may desire to hide
the very presence of their data stored on public servers
in such a way that its existence cannot be proven by the
service providers themselves or another third party.

Storing and sharing data covertly over the internet
serves several purposes. For example, this may be used
as a means to share content in societies that tend to stifle
free exchange of unpopular ideas. Even in more demo-
cratic countries, social taboos can force people to look
for covert means for facilitating secret online collabora-
tions. Finally, individual web users may use such covert
means to backup, store and share their files online with-
out the knowledge of the service providers.

In this paper, we propose the idea of a covert web
based file system, CovertFS, which facilitates secure file
storage and sharing amongst a group of people and yet
provides plausible deniability. CovertFS can be built on
top of any publicly available media hosting and sharing
service. Flickr [2], a photo sharing service from Ya-
hoo, is an excellent example of such a service as it pro-
vides large storage and excellent API. The file system
is covertly hidden within the media hosted by the user
using steganographic techniques. This file system pro-
vides plausible deniability for the user and the service
provider. Plausible deniability is achieved because the
presence of the hidden data cannot be determined by any
external parties, including the service provider.

The salient features of the file system can be stated as
follows:

• Plausible Deniability: The presence of the file sys-
tem or files within the media sharing web account
cannot be determined with certainty by analyzing
the media or the traffic. Hence the user or the ser-
vice provider cannot be compelled by court to dis-
close the contents of the file system. This form
of information hiding is desired by users who can

safely and securely store their documents on third
party servers without the knowledge of the service
providers. The service provider cannot determine
with certainty whether the media is a plain media
file or a media file with hidden content.

• Online File Sharing and Collaboration: The file
system is built on top of a web based media sharing
service. This makes the file system available online
and to anyone anywhere to collaborate or share files
with one another. The additional benefit of this is
only the end-users are aware of the file system or-
ganization and contents. To others, the file sharing
traffic looks like innocuous media sharing traffic.

• Information Hiding: The file system is aimed at
hiding confidential documents, which can be stored
and shared between a group of people. Data is
hidden within the media using advanced stegano-
graphic techniques such as secure or zero diver-
gence steganography [13, 12, 11], which cannot be
steganalyzed to retrieve the hidden content.

2 Design Overview
The design of a covert file system on a media sharing
website poses several research challenges. First, an ef-
ficient way to hide the file system data within photos
is necessary. Advances in steganography help us here
[13, 12, 11]. The file system data can be encrypted and
hidden within the photos in such a way that an adversary
cannot detect the difference between regular photos and
photos with hidden data. Secondly, we need an efficient
mapping scheme of the file system blocks to images in
order to fully utilize the storage capacity offered by the
public server. Finally, covert file access traffic should
not be distinguishable from the innocuous photo sharing
traffic on the same website, originating from the ordinary
users. These users are likely to download new photos
and ignore photos they have already seen, they seldom
update photos they have already posted and do not delete
old photos until there is a shortage of storage on their ac-
count. Such access patterns should not be violated when
the media website is used to access the hidden file data.
In what follows, we will discuss the key design issues
that can address these challenges.

2.1 Mounting the File System
In CovertFS, files are stored remotely, hidden within the
media hosted on a third party service provider. To access
the hidden file system, a user mounts it at a desired mount
point in the local file system. Before mounting the file
system, the user should have a valid account on a media
sharing site. During the mount, the user has to present

proper authorization details such as the media sharing
website url, account name and password for the account
where his file system is hosted and the passphrase for
encryption/decryption of the file system contents. Af-
ter verifying the authorization information, the file sys-
tem mounts the remote web based file system and begins
downloading photos as dictated by the hidden file system
accesses. To avoid repeated downloads of certain photos
(unusual access pattern for media sharing), photos con-
taining the hidden file system metadata are kept in a local
image cache as long as possible.

2.2 Mapping File System Data to Photos
The entire file system information along with file meta
data and file contents are encrypted and stored within
media content on the service provider. Current stegano-
graphic techniques are used to hide the contents of the
file within the media. Our media content here are pho-
tos to be shared with friends and family. Typical photo
sizes stored on Flickr range anywhere between 40KB to
300KB. Current steganographic techniques can safely al-
low embedding of about 10% of information within a
JPEG image with no visual distortion or deviation in
statistical properties of the image. Considering a mini-
mum image size of 40 KB, a 4 KB disk block size can
be stored. To keep the mapping simple, we can assume
that disk blocks are mapped to images one-to-one, which
means that we will only hide 4 KB of data even in larger
images.

To store all the files within the file system remotely,
we need as many images in the Flickr account as the
number of blocks on the file system. The number of
files that can be stored is constrained by the account stor-
age size within Flickr. However, Flickr and most service
providers have unlimited accounts for a minimal service
fee per year, providing a virtually unlimited storage ca-
pacity. Alternative designs can store mutiple file block
in larger images or can span over multiple user accounts
and/or multiple service providers.

Metadata, such as inode blocks, and the direct and
indirect disk blocks are also stored in photos. Inodes
and file block addresses can be identified directly by the
name of the image where they are stored or indirectly us-
ing inode and block allocation maps, themselves stored
in one or multiple images. Retrieval of the photo contain-
ing the first block of the map is done through a name that,
when hashed, maps to a special value, usually a function
of the encryption passphrase entered by the user.

Fig. 1 shows the file system object hierarchy as em-
bedded within different photos stored in the Flickr ac-
count. The photo mountain.jpg contains the root inode,
which points to the only directory inode under the root
directory embedded in the photo hills.jpg. The direc-

snow.jpg

root inode

Inode #n

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

mountain.jpg

Inode #2

lawn.jpg

lion.jpg

sunrise.jpg

sunset.jpg

fallcolors.jpg

tree.jpg

hiking.jpg
inodes

Data blocks

#1 hills.jpg
root mountain.jpg

#n lion.jpg

#1 snow.jpg
#2 sunrise.jpg
#3 sunset.jpg
#4 fallcolors.jpg

#5 tree.jpg

Allocation map

Inode #1

hills.jpg

#2 lawn.jpg

����� ����������

	�
����������

	�
����������

����� ��������� ��������
�
���� ��������

Local file system view

snow.jpg

root inode

Inode #n

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

mountain.jpg

Inode #2

lawn.jpg

lion.jpg

sunrise.jpg

sunset.jpg

fallcolors.jpg

tree.jpg

hiking.jpg
inodes

Data blocks

#1 hills.jpg
root mountain.jpg

#n lion.jpg

#1 snow.jpg
#2 sunrise.jpg
#3 sunset.jpg
#4 fallcolors.jpg

#5 tree.jpg

Allocation map

Inode #1

hills.jpg

#2 lawn.jpg

����� ����������

	�
����������

	�
����������

����� ��������� ��������
�
���� ��������

Local file system view

root inode

Inode #nInode #n

Data block 1

Data block 2

Data block 3

Data block 4

Data block 5

mountain.jpg

Inode #2Inode #2

lawn.jpg

lion.jpg

sunrise.jpg

sunset.jpg

fallcolors.jpg

tree.jpg

hiking.jpg
inodes

Data blocks

#1 hills.jpg
root mountain.jpg

#n lion.jpg

#1 snow.jpg
#2 sunrise.jpg
#3 sunset.jpg
#4 fallcolors.jpg

#5 tree.jpg

Allocation map

Inode #1Inode #1

hills.jpg

#2 lawn.jpg

����� ����������

	�
����������

	�
����������

����� ��������� ��������
�
���� ��������

Local file system view

Figure 1: Covert file system layout embedded within Flickr
photos and a local view of files when file system is mounted

tory contains two files, whose inodes are embedded in
photos lawn.jpg and lion.jpg respectively. Data blocks
are contained within photos snow.jpg, sunrise.jpg, sun-
set.jpg, fallcolors.jpg and tree.jpg. The allocation map
for inodes and data blocks are stored within the photo
hiking.jpg. The figure also shows the local view of the
file system, within the gray box.

2.3 Handling File System Writes
In a read-write file system, metadata as well as data
blocks change as a result of file accesses. In CovertFS,
these changes may generate operations that may look
suspicious for genuine photo sharing such as (i) frequent
image changing and (ii) frequent access to certain old im-
ages. In the next two subsections, we will discuss map-
ping solutions to hide these two file system patterns.

To address frequent image changing due to inode and
file system block updates, we propose to make photos
immutable and apply an update scheme similar to one
used in the log structured file system [10]. According to
this scheme, modified file system objects will be hidden
in new photos. To achieve this, the indirection through
the allocation map is absolutely necessary.

With the proposed scheme, the allocation map be-
comes the file system object whose frequent changes
must also be hidden. To keep the photos carrying the
allocation map also immutable, we must devise a mech-
anism to locate the most recent copy of the map. For
this, we propose two complementary schemes. The basic
scheme takes advantage of the user-defined name space
for photos to apriori decide the name of the photo to store
the next version of the map and to embed it along with

the version number in the photo of the current map (for-
ward pointer). In this way, a file system user can easily
determine when the allocation map has changed by look-
ing at the photo name of the next map. If the new photo
does not exist but the old one does, the client can as-
sume that the map has not changed (photos in the same
chain are garbage collected in the FIFO order) and use
its cached copy. As a backup, in case this chain can-
not be reconstructed due to garbage photo collection, the
names of the map photos are chosen such that all map to
the same special value when when hashed with the user
passphrase. In this way, in the worst case, a complete
inspection of all the images in the account, will allow a
user to discover the most recent copy of the map.

Photo garbage collection is done when the user ac-
count reaches near full capacity. The photos containing
the invalidated blocks will all be deleted in a batch during
this process, freeing up space in the account, yet gener-
ating traffic patterns of photo sharing users.

2.4 Avoiding Photo Hotspots
The current design may expose suspicious hotspot pat-
terns as metadata photos are likely to be more frequently
accessed, which can be an indicative for a covert file sys-
tem. Local caching can alleviate this behavior but only
partially. To further diffuse this pattern, we plan to in-
troduce forward pointers to all metadata objects and not
just the maps. This means that subsequent copies of an
inode, for instance, will be chained by embedding the
name of the photo to store the next version of the inode
in the one carrying the current one. A user who wants
to retrieve the most recent version of an inode and has
a cached photo of an potentially old version can follow
this chain to retrieve it without referring to the allocation
map every time. To guarantee that the file corresponding
to that inode was not deleted, the most recent copy of the
parent directory must also be checked. Finally, avoiding
hotspots through this mechanism is an optimization. In
case an inode version chain cannot be reconstructed, the
user can go back to retrieve the most recent version of
the inode starting from the allocation map.

2.5 File Sharing and Access Control
Flickr provides three types of sharing. Photos can either
be made private, shared with a group, or made public.
Private photos are only accessible to the user who cre-
ated them. If photos are shared as a group, friends and
family can access them and of course, photos made pub-
lic can be accessed by anybody. However, group and
public access sharing do not allow the user to modify the
files.

We build our file sharing and access control model on

top of the Flickr photo sharing model. Only the owner of
the Flickr account is able to modify file system content,
while members of the group or others can only read files
or part of the file system that is enabled selectively for
read sharing by the owner.

Selective sharing needs to be enabled by the owner
who wants to share his files or directories with other
users in the group. Each share is assigned a separate en-
cryption passphrase as shown in Fig. 2. The directory
Politics is shared with a group of friends with a separate
encryption key. Every parent inode object that has a link
pointing to a file or directory has a respective encryption
key associated with it. Storing the encryption key in the
inode allows the owner to access all the files at any time
without retyping separate encryption passwords assigned
to different shares. In case a separate encryption key is
not assigned to any file or directory, the encryption key
is replicated from the parent inode. All other directories
in Fig. 2 are encrypted with the owners encryption key.

The photos corresponding to the directory to be shared
(Politics directory in the fig) are moved to the appropriate
category of photos in the Flickr account for sharing with
the group. The encryption passphrase for files within the
share is given to other users of the group. They can locate
the root inode within the share by hashing with the given
passphrase. Note that the passphrase is different for each
share and can be changed by the owner at any given time,
when he decides to revoke sharing.

2.6 Replication

Since the web based services can be unavailable at cer-
tain time periods, replicating the file system meta-data
and data across different service providers is a desirable
design choice. The replicas can be assigned priorities
such that the downloads always take place from the pri-
mary replica. When the primary replica service provider
is unavailable, the files can still be accessed from the sec-
ondary replicas. Updates may however be propagated
first to the primary and then to the secondary replicas.

�����<Kowner>

������	
�������
�

���
����<Kowner>

��������<Kowner>

�����

��������

��

�������������������

������	��������������
 ��������������

shared directory �����<Kowner>

������	
�������
�

���
����<Kowner>

��������<Kowner>

�����

��������

��

�������������������

������	��������������
 ��������������

shared directory

Figure 2: File sharing with CovertFS. The directory Politics is
shared and has its own encryption key

VFS

FUSE

NFS

EXT3

…

libfuse

CovertFS
Userspace

Kernel

system calls

VFS

FUSE

NFS

EXT3

…

libfuse

CovertFS
Userspace

Kernel

system calls

Figure 3: Overview of CovertFS design

2.7 CovertFS and Hidden Levels
It is possible to argue that the presence of CovertFS it-
self can be incriminating evidence that the user is hiding
something. This is countered in the steganographic file
systems by having different hidden levels. When com-
pelled by court, the user can disclose only one or two
levels with moderately incriminating evidence, while the
presence of real data that he wants to hide can be plausi-
bly denied. It is impossible with this design for the ex-
aminer to prove that the user is indeed hiding something
extra than what he has already disclosed.

A similar analogy applies to CovertFS as well. Hidden
levels can be created in CovertFS. Each level has a differ-
ent encryption passphrase and can only be opened when
the user provides the correct passphrase. Additional lev-
els are also mapped by using other photos within the
same account. Alternatively, hidden levels may also be
created involving additional user accounts on the same
or other service providers.

2.8 Implementation Plan
CovertFS can be built as a user-level file system. We plan
to implement this on top of the FUSE [1] file system in-
terface as shown in Fig. 3. FUSE facilitates easy devel-
opment of user-level file systems. It has a kernel mode
driver and a user-level library. The user-level library lib-
fuse interacts with the kernel mode driver through a de-
vice called /dev/fuse. The system calls that operate on
files in the FUSE file system are redirected from the vir-
tual file system (VFS) layer in the kernel to the FUSE
driver. The driver in turn forwards this call to the user-
space library. The new filesystem, CovertFS in the fig-
ure, that links into this library can handle this call and
implement new functionality. We plan to develop our
proof-of-concept prototype over Flickr [2], since they
have a public API available for this purpose.

3 Discussion
In this section, we provide security analysis and discuss
other design related issues.

3.1 Security Analysis
We define two types of adversaries. A passive adver-
sary simply observes the traffic and checks for anoma-
lies. An active adversary, on the other hand, actively per-
forms steganalysis on random images from time to time
to detect hidden data within the images. We examine
why CovertFS is indeed covert from the point of view of
both the active and the passive adversary. The active ad-
versary is primarily concerned with steganalysis, while
the passive adversary mainly performs traffic analysis on
the Flickr account traffic.

3.1.1 Active Adversary and Steganalysis

Steganalysis is a technique where the adversary can de-
termine that the image is used as a cover for hidden in-
formation. Steganalysis techniques watch for signature
distortions created by known steganography tools. With
respect to JPEG images, some steganography tools use
simple techniques such as LSB encoding. In this method
each bit of the hidden text is encoded in the least signifi-
cant bit of every byte in the JPEG image. This technique
does not cause visual distortion perceptive to the human
eye, but creates huge deviations in the statistical prop-
erties of the JPEG image. Such tools that perform bit
manipulations are called image domain tools and can be
detected easily by steganalysis.

Other set of techniques used for hiding information is
called the transform domain tools. These group of tools
use techniques that involve manipulation of algorithms
and image transforms. One of the popular techniques
used for JPEG images is called the discrete cosine trans-
form (DCT). These methods hide information in more
significant areas of the image and may manipulate image
properties such as luminance. These techniques are far
more robust and much harder to detect using steganal-
ysis. The tradeoff however is that such methods can
encode much smaller amount of information within the
cover. Recent research has come up with zero divergence
steganography or secure steganography that use statisti-
cal restoration techniques [13, 12, 11]. The basic idea
is to thwart steganalysis methods by hiding information
in few bits within the image and adjusting other bits to
offset the deviations caused by the hidden information.
Hence, advances in steganography have made it possible
to build tools that can thwart steganalysis. We plan to use
one such advanced technique in our prototype to hide the
file system data.

3.1.2 Passive Adversary and Traffic Analysis

The passive adversary simply sniffs traffic to look for
anomalies and tries to deduce if any hidden text exists
within the image. All the traffic during upload and down-

load of the files within the file system must appear like
innocuous photo sharing traffic. However, the pattern in
which the files are accessed may leak some information
to the adversary. The adversary however, must not be
able to determine with certainty that a specific pattern at
the beginning of accesses, implies hidden text.

Traffic patterns can be obfuscated by introducing
pseudo random dummy image fetches. The client can
cache already visited photos to ensure that it does not
download those photos too frequently. CovertFS is de-
signed such that only new photos are uploaded and old
ones are deleted when the account reaches near full ca-
pacity, which resembles the behavior of normal photo
sharing users. Also, the additions are done in a batch
as the file system operates in a disconnected mode, mak-
ing additions in a batch to the photo store, similar to how
regular users add photos. Since Flickr has an open API,
several other applications have been built on top of it that
perform specific tasks, customized to the user. Each of
these tasks gives rise to different upload/download pat-
terns.

3.2 Feature or Misuse
CovertFS can be built on top of media sharing service
such as Flickr. While this provides an innovative use of a
commonly used web service, this can be viewed as abuse
of a service designed for a different purpose. We argue
that since Flickr is a photo sharing service, what else is
embedded in the photos does not really affect Flickr’s
business model. Users still host photos on Flickr for
CovertFS to work.

4 Related Work
The steganographic file system that gives the user plau-
sible deniability was first proposed by Anderson and
Shamir [6]. They did not have a working prototype of
the file system. McDonald et al [8] were the first to
build a working prototype of a steganographic file sys-
tem called StegFS. StegFS is a local file system that pro-
vides plausible deniability by hiding files in unused disk
blocks. The prototype did not require a separate par-
tition but worked along with the Linux ext2 partition.
Pang et al [9] demonstrated improvements to the hiding
schemes and design of StegFS, which demonstrated sig-
nificant improvements in performance. All the file sys-
tems mentioned above work with the local hard drive and
provide plausible deniability to the user. None of these
provide the ability to globally access or share files. Since
all of these hide in unused disk blocks, they run the risk
of being overwritten when the driver is not operating in
the steganographic mode. Therefore these require a high
degree of replication, severely limiting the disk space us-
age. CovertFS, on the other hand, provides file sharing

between geographically distant users as well as plausi-
ble deniability. CovertFS hides files from the service
providers themselves and is built over a media sharing
service. The design considerations are significantly dif-
ferent in both cases.

The gmail file system [3] allows the user to store his
data as email messages in his mail account. The service
provider is aware of the existence of the user files in this
mail account. This file system does not allow plausible
deniability or enable file sharing with others. Httpfs [7]
is a network file system that provides access to files on
a remote machine using the http protocol. It requires a
component to run on the remote server, from where doc-
uments can be fetched on the client. This is similar to the
network file system implementation but using http. For
CovertFS, no such component is required on the server
side. DavFS [4] allows to mount files from a WebDAV
server on a local driver. WebDAV is an extension of
http that allows remote collaborative authoring of web re-
sources. DavFS allows a remote web server to be edited
simultaneously by a group using standard applications.
DavFS, fundamentally differs from our implementation
as it requires a server component. None of the above file
systems provide plausible deniability either. CovertFS
can run on top of any media hosting service. The control
lies with the user on how he accesses/modifies his hidden
files.

The Web File system [5] provides a file system inter-
face to the world wide web. The goal here is completely
different from our goal. This file system allows the user
to browse the web as different files that are downloaded
on the local hard drive.

5 Conclusion
In this paper, we motivate the need for a web based covert
file system, CovertFS. This file system allows users to
store their files, hidden inside the media hosted on a pub-
lic server and access them from anywhere in the world
with complete confidentiality from any third party in-
cluding the service provider. Additionally, the very ex-
istence of the file system is known only to the user and
cannot be determined or proven by anyone else. Further,
it allows files to be selectively and covertly shared with
others as and when needed. As part of ongoing work, we
are developing a working prototype of such a file sys-
tem and will evaluate it in terms of latencies, scalability,
security and privacy.

Acknowledgments
We would like to thank the anonymous reviewers and
Pandurang Kamat for their insightful comments and
feedback. This work has been supported in part by the
NSF CAREER grant CCR-0133366.

References
[1] Filesystem in userspace.

http://fuse.sourceforge.net/.

[2] Flickr photo sharing. http://www.flickr.com/.

[3] The gmail file system.
http://richard.jones.name/google-hacks/gmail-
filesystem/gmail-filesystem.html.

[4] Webdav linux file system (davfs2).
http://dav.sourceforge.net/.

[5] ADYA, A. Web file system: File-like access to the
web. In 5th Annual MIT Student Workshop on Scal-
able Computing. Wellesley, MA. August 1995.

[6] ANDERSON, NEEDHAM, AND SHAMIR. The
steganographic file system. In IWIH: International
Workshop on Information Hiding (1998).

[7] KISELYOV, O. A network file system over HTTP:
Remote access and modification of files and files.
pp. 75–80.

[8] MCDONALD, A. D., AND KUHN, M. G. Stegfs: A
steganographic file system for linux. In Information
Hiding (1999), pp. 462–477.

[9] PANG, H., TAN, K.-L., AND ZHOU, X. Stegfs: A
steganographic file system. icde 00 (2003), 657.

[10] ROSENBLUM, M., AND OUSTERHOUT, J. K. The
design and implementation of a log-structured file
system. In SOSP ’91: Proceedings of the thirteenth
ACM symposium on Operating systems principles
(New York, NY, USA, 1991), ACM Press, pp. 1–
15.

[11] SOLANKI, K., SULLIVAN, K., MADHOW, U.,
MANJUNATH, B. S., AND CHANDRASEKARAN,
S. Statistical restoration for robust and secure
steganography. In IEEE International Conference
on Image Processing (Sep 2005).

[12] SOLANKI, K., SULLIVAN, K., MADHOW, U.,
MANJUNATH, B. S., AND CHANDRASEKARAN,
S. Provably secure steganography: Achieving
zero k-l divergence using statistical restoration. In
IEEE International Conference on Image Process-
ing 2006 (ICIP06) (Oct 2006).

[13] SULLIVAN, K., SOLANKI, K., MANJUNATH, B.,
MADHOW, U., AND CHANDRASEKARAN, S. De-
termining achievable rates for secure zero diver-
gence steganography. In IEEE International Con-
ference on Image Processing 2006 (ICIP06) (Oct
2006).

