
Stupid File Systems Are Better

Lex Stein
Harvard University

Abstract

File systems were originally designed for hosts with only
one disk. Over the past 20 years, a number of increas-
ingly complicated changes have sought to optimize the
performance of file systems on a single disk. At the
same time, separated by a narrow interface known as
the block, storage systems have been advancing on their
own. Storage systems increasingly use parallelism to
provide higher throughput and fault-tolerance and em-
ploy additional levels of address mapping indirection
(known as virtualization) to improve system flexibility
and ease administration costs. In this paper, I show that
file and storage systems have gone in different directions.
If file systems want to take advantage of modern systems
such as disk arrays, they could do better by throwing
out the past 20 years of optimizations and simply layout
blocks randomly.

1 File Systems

The first popular file systems were on the local disks
of host computers. Today there are often several hops
of networking between a host and its permanent stor-
age today, but most often, the final destination or orig-
inal source of data is a hard disk. Disk geometry has
played a central role in the past 20 years of file system
optimizations. The first file system to make allocation
decisions based on disk geometry was the BSD Fast File
System (FFS) [5]. FFS improved file system throughput
over the UNIX file system by clustering sequentially ac-
cessed data, colocating file inodes with their data, and in-
creasing the block size, while providing a smaller block
size, called a fragment, for small files. FFS introduced
the concept of the cylinder group, a three-dimensional
structure consisting of consecutive disk cylinders, and
the foundation for managing locality to improve perfor-
mance. After FFS several other advances were made im-
proving file system layout to bring the on-disk locality

closer to the access pattern.
Log-structured file systems [7] [8] take a fundamen-

tally different approach to data modification that is more
like databases than traditional file systems. An LFS up-
dates copy-on-write rather than update-in-place. While
an LFS, looks very different, it is motivated by the
same assumption as the FFS optimizations; the high
performance of sequential operations. Advocates of
LFS argued that reads would become insignificant with
large buffer caches. Using copy-on-write necessitates a
garbage collection thread known as the cleaner.

Journaling is less radical than log-structuring and is
predicated on the same assumption of efficient sequen-
tial disk operations. With a log-structured file system,
a single log stores all data and metadata. Journaling
stores only metadata intent records in the log and seeks
to improve performance by transforming metadata up-
date commits into sequential intent writes, allowing the
actual in-place update to be delayed. The on-disk data
structures are not changed and there is no cleaner thread.
Soft updates [2] is a different approach that aims to solve
the same problem. Soft updates adds complexity to the
buffer cache code so that it can carefully delay and order
metatadata operations.

All of these file system advances have been predicated
on the efficiency of sequential disk operations. Does this
hold for current storage systems?

2 Storage Systems

File systems use a simple, narrow, and stable abstract in-
terface to storage. While the exact driver used to im-
plement this interface has changed from IDE to SCSI to
Fibre Channel and others, file systems have continued
to use the put and get block interface abstraction. File
and storage system innovation has progressed on the two
sides of this narrow interface. While file systems have
developed more and more optimizations for the single
disk model of storage, storage systems have evolved on

their own, and have changed substantially from that sim-
ple single disk.

The first big change was disk arrays and, in particular,
arrays known as Redundant Arrays of Inexpensive Disks
(RAID). A paper by Patterson and Gibson [6] popular-
ized RAID and the beginnings of an imperfect but use-
ful taxonomy called RAID levels. RAID level 0 is sim-
ply the parallel use of disks with no redundancy and is
often called Just a Bunch Of Disks (JBOD). JBOD and
RAID systems employ disks in parallel to increase sys-
tem throughput. Disk arrays typically stripe the block
address space across their component disks. For large
stripes, blocks that are together in numerical block ad-
dress space will most likely be located on the same disk.
However, a file system that locates blocks that are ac-
cessed together on the same disk will be prohibited from
operating on blocks in parallel. For a system that trans-
lates temporal locality to numerical block address space
proximity there are two opposing forces struggling here;
(1) an increasing stripe size will cluster blocks together
and improve single disk performance, and (2) the in-
creasing stripe size will move blocks that are accessed
together onto the same storage device, eliminating the
opportunity for parallelism.

Storage systems are expensive to manage. Reducing
management costs is an important goal for the design
of storage systems, just like improving file system meta-
data throughput is a goal for the design of file systems.
This has led to a phenomenon known as storage virtual-
ization. In a primitive form, virtualization is present in
SCSI drives, where disk firmware remaps faulty blocks.
However, this remapping is not believed to be significant
enough to meaningfully disrupt the foundational assump-
tions of local file system performance. On the large scale,
virtualization is used to provide at least one layer of ad-
dress translation between the file system and the storage
system. This indirection gives storage administrators the
freedom to install new storage subsystems, expand ca-
pacity, or reallocate partitions without affecting file sys-
tem service. This is great for storage system and admin-
istration, but it completely disrupts the assumption that
there is a strong link between proximity in the block ad-
dress space and lower sequential access times through
efficient mechanical motion.

3 Experimental Approach

This paper is motivated by the question: how do the
optimizations of local file systems affect their perfor-
mance on advanced parallel storage systems? To answer
this, I have traced several workloads and run these traces
through a storage system simulator. The linux Ext2 and
Ext3 file systems are both advanced current file systems
that incorporate many locality optimizations. Ext3 jour-

nals and, in my experiments, Ext2 does not. To find
out how a file system would perform that does not care-
fully and cleverly allocate blocks within the block ad-
dress space, I have generated traces that are random per-
mutations of the Ext2 and Ext3 block traces. Block iden-
tities are preserved under permutation. Only the block
address changes. The degree of the permutation is known
as the stupidity of the trace. Within a generated trace,
each block is permuted (no replacement) with constant
probability p to a new address in the block address space.
The new addresses are selected with uniform probability
from those that remain free. If p is 1.0, then every block
is permuted and the trace is known as the stupid trace. A
stupid trace represents the workload on a file system that
does not (or cannot) put any thought into block layout.
If p is 0.0, then no block is permuted and the trace is ex-
actly the same as the original Ext2 or Ext3 trace. Traces
with p of 0.0 are known as smartypants traces because
they represent the workload of a file system that spends
a lot of effort being clever about block layout.

All the trace generation experiments were run on the
same Linux 2.4.17 system. Throughout the tracing, the
configuration of the system was unchanged, consisting
of 32K L1 cache, 256K L2 cache, a single 1GHz Intel
Pentium III processor, 768MB DRAM, and 3 8GB SCSI
disks. The disks are all Seagate ST318405LW and share
the same bus. One of the disks was dedicated to bench-
marking, storing no other data and used by no other pro-
cesses.

The lltrace [4] low-level disk trace patch for Linux
traces block operations just before they are sent to disk.
Lltrace records the sector number, the number of sectors
requested, and whether the operation is a read or a write.
Lltrace traces to an in-kernel buffer. I used lltrace to trace
the block operations of my benchmarks. Once the work-
loads had completed, I would dump the trace buffer into
a file on an untraced device.

Two benchmarks were run to generate the block
traces; postmark and linux-build.

Postmark [3] is a synthetic benchmark designed to use
the file system as an email server does, generating many
metadata operations on small files. Postmark was run
with file sizes distributed uniformly betwen 512B and
16K, reads and writes of 512B, 2000 transactions, and
20000 subdirectories. The postmark trace was generated
from a run with these parameters on an Ext2 file system.

Linux-build is a build of a Linux version 2.4.17 pre-
configured kernel. It is a real workload, not a synthetic
benchmark. Linux-build was used to generate two block
traces. There was only one configuration difference be-
tween the two runs of linux-build. One was run on Ext2
and the other on Ext3. I did this to investigate the impact
of journaling.

All experimental approaches to evaluating computer

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100 120 140

I/O
s

pe
r

se
co

nd

number of disks

sequential and random read throughput vs. array size

rand 16
rand 128

seq 16
seq 128

Figure 1: read microbenchmarks: throughput of sequen-
tial and random reads for stripe units of 16 and 128 sec-
tors (8KB and 64KB).

systems have their strengths and weaknesses. Trace-
driven simulation is one kind of trace-driven evaluation.
The central weakness of trace-driven evaluation is that
the workload dows not vary depending on the perfor-
mance of the system. On the other hand, it’s central
strength is that it represents something meaningful. A
recent report by Zhu et al. discusses these issues [9].

In order to evaluate the performace of these workloads
on a variety of modern storage systems, I built a simu-
lator. The simulator simulates the performance of RAID
arrays, and uses a disk simulator, CMU DiskSim [1], as
a component to simulate disks. CMU DiskSim is dis-
tributed with several experimentally validated disk mod-
els. Every experimental results reported in this paper was
generated using the validated 16GB Cheetah 9LP SCSI
disk model1.

4 Experimental Results

4.1 Microbenchmarks

I ran several microbenchmarks. The behavior of these
microbenchmarks help to explain the behavior of the
macrobenchmarks. All the benchmarks issue I/O to the
array controller with a window of 200 asynchronous
I/Os. The sequential read and write benchmarks issue
I/Os sequentially across the block address space exported
by the array controller. The random read and write
benchmarks issue I/Os randomly across the block ad-
dress space. In every benchmark, I/Os are done to the
array controller in independent 4KB chunks. The mi-
crobenchmarks were run for different stripe units.

Sequential far outperfoms random for the smaller
stripe units. This is due to track caching on the disk.
Sequential rotates across the disks. When it recycles, the
blocks are already waiting in the cache. For the smaller

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140

I/O
s

pe
r

se
co

nd

number of disks

sequential and random write throughput vs. array size

rand 16
rand 128

seq 16
seq 128

Figure 2: write macrobenchmarks: throughput of se-
quential and random writes for stripe units of 16 and 128
sectors (8KB and 64KB).

stripe units, the track cache will be filled for more cycles.
Larger stripe units benefit less from spreading the paral-
lel I/Os across more disks. As the stripe unit becomes
greater, the benefit of the track caching becomes less and
less of a component, bringing the sequential throughput
down to the random throughput.

Writes do not benefit from track caching. Without
track caching, sequential and random have similar per-
formance for small stripe units across disk array sizes.
As the stripe unit increases, sequential I/Os concentrate
on a smaller and smaller set of disks. Random perfor-
mance is resilient to the stripe unit. This shows how per-
formance is stable across different levels of virtualization
when spatial locality is removed from the I/O stream.
This effect is responsible for the behavior we will see
next in the macrobenchmark section.

4.2 Macrobenchmarks

In this section, I will discuss the results of 3 experiments.
The first experiment measured the run time of the

stupid and smartypants Ext2 postmark traces on JBODs
of size varying between 1 (not really a bunch of disks)
and 256 disks. This experiment investigates how the rel-
ative scaling of the traces with array size. A JBOD is an
array of disks with no redundancy. There is no parity and
therefore no parity computation. In this experiment, the
trace block address space was striped evenly across all
the disks in the array. Each disk had only one stripe unit
and that stripe unit was of size equal to the full space
divided by the number of disks. Figure 3 shows a pat-
tern observed across similar experiments with the other
workloads. For 1 or a small number of disks, smartypants
dominates performance. For example, with 1 disk, stupid
takes 48% longer to run the postmark benchmark. How-
ever, with 2 disks, stupid is already faster, taking 20%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 10 100

T
im

e
(s

ec
on

ds
)

Number of disks (log scale)

Postmark Run Time

smartypants
stupid

Figure 3: Postmark ext2 run time across JBOD (Just a
Bunch Of Disks) arrays of varying size.

less time than smartypants. The performance of smarty-
pants is quite stable across increasing disk sizes. The gap
between smartypants and stupid grows quickly on this
benchmark because of the high degree of spatial local-
ity of the postmark benchmark operations. The random
permutation of the stupid trace spreads the blocks evenly
accross the disks allowing for parallelism. The locality
clustering of smartypants leads to convoying from disk
to disk as smartypants jumps from one cluster to another,
bottlenecked on the internal performance of the single
disks.

Figure 4 shows the results of the second experiment.
This experiment simulated the Ext2 and Ext3 stupid and
smartypants traces on RAID-4 and RAID-5 arrays. In all
cases, smartypants loses to stupid. Recall that Ext3 jour-
nals while Ext2 does not. The largest improvements for
stupid is on both the Ext2 and Ext3 RAID-5 systems. In
both cases, RAID-5 smartypants underperforms RAID-4
smartypants while RAID-5 stupid outperforms RAID-4
stupid.

Figure 5 shows the normalized performance of a single
disk and a RAID-5 array for varying stupidity of the Ext3
linux build. Figure 5 shows, among other things, that
smartypants really does help with single disk systems.
Moving from stupid (stupidity of 1) to smartypants (stu-
pidity of 0) the performance on the single disk improves,
with the run time decreasing by 59%. The RAID-5 pat-
tern is completely different. As stupidity decreases, the
run time increases by 35%. This result shows the dif-
ferent effect of block allocation choice on parallel and
centralized devices. A parallel storage device can benefit
from eliminating the locality-based block allocation that
improves single-disk file systems.

6.32
5.89

6.79

5.27

ext2

6.15

5.60

6.97

5.16

ext3

Linux Build Time

0

2

4

6

8

10

T
im

e
(s

ec
on

ds
)

File System

Legend

Smartypants on RAID-4
Stupid on RAID-4
Smartypants on RAID-5
Stupid on RAID-5

Figure 4: Build time of ext2 and ext3 smartypants and
stupid traces on RAID-4 and RAID-5 arrays. Both arrays
have stripe unit of 128KB and 256 disks. For both, the
group size is 256.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
im

e

Stupidity

Stupidity vs. Normalized Time

single disk
RAID-5

Figure 5: Stupidity vs. normalized time for the ext3
linux-build workload on a single disk and a 256 disk
RAID-5 array.

5 Conclusions

The experiments described in this paper have shown that
random block allocations will often perform better on a
storage array than the careful block allocation decisions
of file systems such as Ext2 and Ext3. The randomized
permutations scramble all the careful block proximity
decisions of these advanced file systems, yet outperform
them on disk arrays under several different workloads.
It’s time we rethink file systems.

6 Acknowledgments

Discussion with Margo Seltzer originated the question
motivating this paper. Discussion with Daniel Ellard
contributed insight on the workings of disk arrays.

References

[1] BUCY, J. S., GANGER, G. R., AND CONTRIBUTORS. The
disksim simulation environment version 3.0 reference manual.
Tech. Rep. CMU-CS-03-102, CMU, January 2003.

[2] GANGER, G. R., AND PATT, Y. N. Metadata update performance
in file systems. In Proceedings of the USENIX 1994 Symposium
on Operating Systems Design and Implementation (Monterey, CA,
USA, 14–17 1994), pp. 49–60.

[3] KATCHER, J. Postmark: A new filesystem benchmark. Tech. Rep.
TR3022, Network Appliance, 1997.

[4] LLOYD, O. Lltrace: Low level disk trace patch for linux, January
2002.

[5] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY,
R. S. A fast file system for UNIX. Computer Systems 2, 3 (1984),
181–197.

[6] PATTERSON, D., AND GIBSON, G. A case for redundant arrays
of inexpensive disks (raid). In SIGMOD International Conference
on Management of Data (June 1998).

[7] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM transactions
on computer systems 10, 1 (Feb. 1992), 26–52.

[8] SELTZER, M. I., BOSTIC, K., MCKUSICK, M. K., AND

STAELIN, C. An implementation of a log-structured file system
for UNIX. In USENIX Winter (1993), pp. 307–326.

[9] ZHU, N., CHEN, J., CKER CHIUEH, T., AND ELLARD, D. Scal-
able and accurate trace replay for file server evaluation. Tech. Rep.
TR153, SUNY Stony Brook, December 2004.

Notes
1This is a circa-1999 disk. I am completing the validation and inte-

gration of a more recent disk.

