
Treating Bugs As Allergies: A Safe Method for Surviving Software Failures

Feng Qin, Joseph Tucek and Yuanyuan Zhou
Department of Computer Science, University of Illinois at Urbana-Champaign�

fengqin, tucek, yyzhou � @cs.uiuc.edu

ABSTRACT
Many applications demand availability. Unfortunately,
software failures greatly reduce system availability. Pre-
vious approaches for surviving software failures suffer
from several limitations, including requiring application
restructuring, failing to address deterministic software
bugs, unsafely speculating on program execution, and re-
quiring a long recovery time.

This paper proposes an innovative, safe technique,
called Rx, that can quickly recover programs from many
types of common software bugs, both deterministic and
non-deterministic. Our idea, inspired by allergy treat-
ment in real life, is to rollback the program to a recent
checkpoint upon a software failure, and then to reexe-
cute the program in a modified environment. We base
this idea on the observation that many bugs are corre-
lated with the execution environment, and therefore can
be avoided by removing the “allergen” from the environ-
ment. Rx requires few to no modifications to applications
and provides programmers with additional feedback for
bug diagnosis.

1 Introduction
1.1 Motivation
Many applications, especially critical ones such as pro-
cess control or on-line transaction monitoring, require
high availability [14]. For server applications, downtime
leads to lost productivity and lost business. According
to a report by Gartner Group [22], the average cost of
an hour of downtime for a financial company exceeds
six million US dollars. With the tremendous growth of
e-commerce, almost every kind of organization increas-
ingly depends on highly available systems.

Unfortunately, software failures greatly reduce system
availability. A recent study showed that software failures
account for up to 40% of system failures [16]. Among
them, memory-related bugs and concurrency bugs are
common and severe software defects, causing more than
60% of system vulnerabilities [9]. For this reason, soft-
ware companies invest enormous effort and resources on
software testing and bug detection prior to releasing soft-
ware. However, software failures still occur during pro-
duction runs since some bugs will inevitably slip through
even the strictest testing. Therefore, to achieve higher
system availability, mechanisms must be devised to al-

low systems to survive the effects of uneliminated soft-
ware bugs to the largest extent possible.

Previous work on surviving software failures can be
classified into four categories. The first category en-
compasses various flavors of rebooting (restarting) tech-
niques, including whole program rebooting [14, 25],
micro-rebooting of partial system components [7, 6, 8],
and software rejuvenation [15, 13, 4]. Since many
of these techniques were originally designed to handle
hardware failures, most of them are ill-suited for surviv-
ing software failures. For example, they cannot deal with
deterministic software bugs, a major cause of software
failures [10], because these bugs will still occur even
after rebooting. Another important limitation of these
methods is service unavailability while restarting, which
can take up to several seconds [26]. For servers that
buffer significant amounts of state in main memory (e.g.
data caches), it requires a long period to warm up to full
service capacity [5, 27]. Micro-rebooting [8] addresses
this problem to some extent by only rebooting the failed
components. However, it requires legacy software to be
reconstructed in a loosely-coupled fashion.

The second category includes general checkpointing
and recovery. The most straightforward method in this
category is to checkpoint, rollback upon failures, and
then reexecute either on the same machine [12, 19] or
on a different machine designated as the “backup server”
(either active or passive) [14, 3, 5, 27]. Similar to whole
program rebooting, these techniques were also proposed
to deal with hardware failures, and therefore suffer from
the same limitations in addressing software failures. Pro-
gressive retry [28] is an interesting improvement over
these works. It reorders messages to increase the de-
gree of non-determinism. While this work proposes a
promising direction, it limits the technique to message
reordering. As a result, it cannot handle bugs unrelated
to message order. For example, if a server receives a ma-
licious request that exploits a buffer overflow bug, sim-
ply reordering messages will not solve the problem. The
most aggressive approaches in this category include re-
covery blocks [18] and n-version programming [2, 1],
both of which rely on different implementation versions
upon failure. These approaches may survive determinis-
tic bugs under the assumption that different versions fail
independently. But they are too expensive to be adopted

by software companies because they double the software
development costs and efforts.

The third category comprises application-specific re-
covery mechanisms, such as the multi-process model
(MPM), exception handling, etc. Some multi-processed
applications, such as the multi-processed version of the
Apache HTTP server and the CVS server, can simply
kill a failed process and start a new one to handle a
failed request. While simple and capable of surviving
certain software failures, this technique has several lim-
itations. First, if the bug is deterministic, the new pro-
cess will most likely fail again at the same place given
the same request (e.g. a malicious request). Second, if
a shared data structure is corrupted, simply killing the
failed process and restarting a new one will not restore
the shared data to a consistent state, therefore potentially
causing subsequent failures in other processes. Other
application-specific recovery mechanisms require soft-
ware to be failure-aware, which adversely affects pro-
gramming difficulty and code readability.

The fourth category includes several recent non-
conventional proposals such as failure-oblivious com-
puting [20, 21] and the reactive immune system [23].
Failure-oblivious computing proposes to deal with buffer
overflows by providing artificial values for out-of-bound
reads, while the reactive immune system returns a specu-
lative error code for functions that suffer software fail-
ures (e.g. crashes). While these approaches are in-
spiring and may work for certain types of applica-
tions or certain types of bugs, they are unsafe to use
for correctness-critical applications (e.g. on-line banking
systems) because they “speculate” on programmers’ in-
tentions, which can lead to program misbehavior. The
problem becomes even more severe and harder to de-
tect if the speculative “fix” introduces a silent error that
does not manifest itself immediately. Such problems, if
they occur, are very hard for programmers to diagnose
since the application’s execution has been forcefully and
silently perturbed by those speculative “fixes”.

Besides the above individual limitations, existing
work provides insufficient feedback to developers for de-
bugging. For example, the information provided to de-
velopers may include only a core dump, several check-
points, and an event log for the deterministic replay of a
few seconds of recent execution. To save debugging ef-
fort, it is desirable if the run-time system can provide in-
formation regarding the bug type, under what conditions
the bug is triggered, and how it can be avoided. Such di-
agnostic information can guide programmers during their
debugging process and thereby enhance efficiency.

1.2 Our Contributions
In this paper, we propose a safe technique, called Rx,
to quickly recover from many types of software failures
caused by common software defects, both deterministic

and non-deterministic. It requires few to no changes to
applications’ source code, and provides diagnostic in-
formation for postmortem bug analysis. Our idea is to
rollback the program to a recent checkpoint when a bug
is detected, dynamically change the execution environ-
ment based on the failure symptoms, and then reexecute
the buggy code region in the new environment. If the
reexecution successfully passes through the problematic
region, the environmental changes are disabled to avoid
imposing time and space overheads.

Our idea is inspired from real life. When a person
suffers from an allergy, the most common treatment is
to remove allergens from their living environment. For
example, if patients are allergic to milk, they should re-
move diary products from the diet. If patients are al-
lergic to pollen, they may install air filters to remove
pollen from the air. Additionally, when removing a can-
didate allergen from the environment successfully treats
the symptoms, it allows diagnosis of the cause of the
symptoms. Obviously, such treatment cannot and also
should not start before patient shows allergic symptoms
since changing living environment requires special effort
and may also be unhealthy.

In software, many bugs resemble allergies. That is,
their manifestation can be avoided by changing the ex-
ecution environment. According to a previous study by
Chandra and Chen [10], around 56% of faults in Apache
depend on execution environment1. Therefore, by re-
moving the “allergen” from the execution environment,
it is possible to avoid such bugs. For example, a memory
corruption bug may disappear if the memory allocator
delays the recycling of recently freed buffers or allocates
buffers non-consecutively in isolated locations. A buffer
overrun may not manifest itself if the memory allocator
pads the ends of every buffer with extra space. Data races
can be avoided by changing timing events such as thread-
scheduling, asynchronous events, etc. Bugs that are ex-
ploited by malicious users can be avoided by dropping
such requests during program reexecution. Even though
dropping requests may make a few users (hopefully the
malicious ones) unhappy, they do not introduce incorrect
behavior to program execution like the failure-oblivious
approaches do. Furthermore, given a spectrum of possi-
ble environment changes, the least intrusive changes can
be tried first, reserving the most extreme one as a last
resort for when all other changes have failed. Finally,
the specific environment change which cures the problem
gives diagnostic information as to what the bug might be.

Similar to an allergy, it is difficult and expensive to ap-
ply these execution environmental changes from the very
beginning of the program execution because we do not

1Note that our definition of execution environment is different from
theirs. In our work, the standard library calls, such as malloc, and
system calls are also part of execution environment.

checkpoint

App App

Env

Software Rollback
Failure

Reexecute Change
Environment

Succeed
App

Fail

Time Out Other Approaches
(e.g. whole program restart)

App

Env

App App

Env Env’ Env’ Env

Figure 1: Rx main idea

know what bugs might occur later. For example, zero-
filling newly allocated buffers imposes time overhead.
Therefore, we should lazily apply environmental changes
only when needed.

Compared to previous solutions, Rx has the following
unique advantages:

(1) Comprehensive: Besides non-deterministic bugs,
Rx can also survive deterministic bugs. We have evalu-
ated our idea using several server applications with com-
mon software bugs and our preliminary results show that
Rx can successfully survive these software bugs.

(2) Safe: Rx does not speculatively “fix” bugs at run
time. Instead, it prevents bugs from manifesting them-
selves by changing only the program’s execution envi-
ronment. Therefore, it does not introduce uncertainty or
misbehavior into a program’s execution, which is diffi-
cult for programmers to diagnose.

(3) Noninvasive: Rx requires few to no modifications
to applications’ source code. Therefore, it can be easily
applied to legacy software.

(4) Efficient: Because Rx requires no rebooting or
warm-up, it significantly reduces system down time and
provides reasonably good performance during recovery.
Additionally, Rx imposes only the minimal overhead of
lightweight checkpointing during normal execution.

(5) Informative: Rx does not hide software bugs. In-
stead, bugs are still exposed. Furthermore, besides the
usual bug report package (e.g. core dumps, checkpoints
and event logs), Rx provides programmers with addi-
tional diagnostic information for postmortem analysis,
including what conditions triggered the bug and which
environmental changes can and cannot avoid the bug.
Based on such information, programmers can more ef-
ficiently find the root cause of the bug. For example, if
Rx successfully avoids a bug by padding newly allocated
buffers, the bug is likely to be a buffer overflow. Sim-
ilarly, if Rx avoids a bug by delaying the recycling of
freed buffers, the bug is likely to be caused by double
free or dangling pointers.

2 Main Idea of Rx
The main idea of Rx is to reexecute a failed code region
in a new environment that has been modified based on
the failure symptoms. If the bug’s “allergen” is removed
from the new environment, the bug will not occur during

reexecution, and so the program will survive this soft-
ware failure without rebooting the whole program. Af-
ter the reexecution safely passes through the problematic
code region, the environmental changes are disabled to
reduce time and space overhead.

Figure 1 shows the process by which Rx survives soft-
ware failures. Rx periodically takes light-weight check-
points that are specially designed to survive software
failures instead of hardware failures or OS crashes [24].
When a bug is detected, either by an exception or by the
integrated dynamic defect detection tools called Rx sen-
sors, the program is rolled back to a recent checkpoint.
Rx then analyzes the occurring failure based on the fail-
ure symptoms and “experiences” accumulated from pre-
vious failures, and determines how to apply environmen-
tal changes to avoid this failure. Finally, the program
reexecutes from the checkpoint in the modified environ-
ment. This process may repeat several times, each time
with a different environmental change or from a different
checkpoint, until either the failure disappears or a time-
out occurs. If the failure does not recur in a reexecution
attempt, the execution environment is reset to normal to
avoid the time and space overhead imposed by some of
the environmental changes.

Obviously, the execution environment cannot be arbi-
trarily modified for reexecution. A useful reexecution en-
vironmental change should satisfy two properties. First,
it should be correctness-preserving, i.e., executing the
original program and every step (e.g., instruction, library
call and system call) of the program is executed accord-
ing to the APIs. For example, in the ���

�������
library call,

we have the flexibility to decide where buffers should be
allocated, but we cannot allocate a smaller buffer than re-
quested. Second, a useful environmental change should
be able to potentially avoid some bugs. For example,
padding every allocated buffer can avoid some buffer
overflows from manifesting during reexecution.

Examples of useful execution environmental changes
include, but are not limited to, the following categories:

(1)Memory management based: Many software bugs
are memory related, such as buffer overflows, dangling
pointers, etc. These bugs may not manifest themselves if
memory management is performed slightly differently.
For example, each buffer allocated during reexecution
can have padding added to both ends to prevent some
buffer overflows. Delaying the recycling of freed buffers

Category Environmental Changes Potentially-Avoided Bugs Deterministic?

delayed recycling of freed buffer double free, dangling pointer YES
Memory padding allocated memory blocks buffer overflow YES

Management allocating memory in an isolated location memory corruption YES
zero-filling newly allocated memory buffers uninitialized read YES
scheduling concurrency bugs NO

Timing-related signal delivery concurrency bugs NO
message reordering concurrency bugs NO

User Request Related dropping user requests bugs related to the dropped request Depends

Table 1: Possible environmental changes and their potentially-avoided bugs

can reduce the probability for a dangling pointer to cause
memory corruption. In addition, buffers allocated dur-
ing reexecution can be placed in isolated locations far
away from existing memory buffers to avoid some mem-
ory corruption. Furthermore, zero-filling new buffers can
avoid some uninitialized read bugs. Since none of the
above changes violate memory allocation or dealloca-
tion interface specifications, they are safe to apply.

(2)Timing based: Most non-deterministic software
bugs, such as data races, are related to the timing of asyn-
chronous events. These bugs will likely disappear under
different timing conditions. Therefore, Rx can forcefully
change the timing of these events to avoid these bugs dur-
ing reexecution. For example, increasing the length of a
scheduling time slice will likely avoid context switches
during buggy critical sections.

(3)User request based: Since it is infeasible to test ev-
ery possible user request before releasing software, many
bugs occur due to unexpected user requests. For exam-
ple, malicious users issue malformed requests to exploit
buffer overflow bugs during stack smashing attacks [11].
These bugs can be avoided by dropping some users’ re-
quests during reexecution. Of course, since the user may
not be malicious, this method should be used as a last
resort after all other environmental changes fail.

Table 1 lists some environmental changes and the
types of bugs that can be potentially avoided by them.
Although there are many such changes, due to space lim-
itations, we only list a few examples for demonstration.

After a reexecution attempt successfully passes the
problematic program region for a threshold amount of
time, the environmental changes applied during the suc-
cessful reexecution are disabled to reduce space and time
overhead. Furthermore, the failure symptoms and the ef-
fects of the environmental changes applied are recorded.
This speeds up the process of dealing with future fail-
ures with similar symptoms and code locations. Addi-
tionally, Rx provides all such diagnostic information to
programmers together with core dumps and other basic
postmortem bug analysis information.

If the failure still occurs during a reexecution attempt,
Rx will rollback and reexecute the program again, either
with a different environmental change or from an older

checkpoint. For example, if one change (e.g. padding
buffers) cannot avoid the bug during the reexecution, Rx
will rollback the program again and try another change
(e.g. zero-filling new buffers) during the next reexecu-
tion. If none of the environmental changes work, Rx
will rollback further and repeat the same process. If
the failure still remains after a threshold number of it-
erations of rollback-reexecute, Rx will resort to previous
solutions, such as whole program rebooting [14, 25] or
micro-rebooting [7, 6, 8], as supported by applications.

Upon a failure, Rx follows several rules to determine
the order in which environmental changes should be ap-
plied during the recovery process. First, if a similar fail-
ure has been successfully avoided by Rx before, the en-
vironmental change that worked previously will be tried
first. If this does not work, or if no information from pre-
vious failures exists, changes with small overheads (e.g.
padding buffers) are tried before those with large over-
heads (e.g. zero-filling new buffers). Changes with neg-
ative side effects (e.g. dropping requests) are tried last.
Changes that do not conflict, such as padding buffers and
changing event timing, can be applied simultaneously.

There is a rare possibility that a bug still occurs dur-
ing reexecution but is not detected in time by Rx’s sen-
sors. In this case, Rx will claim a recovery success while
it is not. Addressing this problem requires using more
rigorous on-the-fly software defect checkers as sensors.
This is currently a hot research area that has attracted
much attention. In addition, it is also important to note
that, unlike in failure oblivious computing, this problem
is caused by the application’s bug instead of Rx’s envi-
ronmental changes. Environmental changes just make
the bug manifest itself in a different way. Furthermore,
since Rx logs its every action including what environ-
mental changes are applied and what the results are, pro-
grammers can use this information to analyze the bug.

3 Rx Design Overview
While the Rx implementation borrows ideas from pre-
vious work, many design issues need to be addressed
differently due to differing goals. First, Rx targets soft-
ware failures instead of hardware failures or OS crashes.
Therefore, the checkpointing component does not need
to be heavy-weight. Second, Rx does not require de-
terministic replay. Instead, Rx needs the exact opposite:

non-determinism. Therefore, issues such as checkpoint
management and the output commit problem [12] need
to be addressed differently.

As shown in Figure 2, Rx consists of five compo-
nents: (1) sensors for detecting failures and bugs, (2) a
Checkpoint-and-Rollback (CR) component, (3) a proxy
for making server recovery process transparent to clients,
(4) environmental wrappers, and (5) a control unit that
determines the recovery plan for an occurring failure.

Sensors detect software bugs and failures by dynami-
cally monitoring applications’ execution. There are two
types of sensors. The first type detects software errors
such as assertion failures, access violations, divide-by-
zero exceptions, etc. This type of sensor is relatively
easy to implement by simply taking over OS-raised ex-
ceptions. The second type of sensor detects software
bugs such as buffer overflows, accesses to freed memory
etc., before they cause the program to crash. This type of
sensor leverages existing dynamic bug detection tools,
such as our previous work, SafeMem [17], that have low
run-time overhead (only 1.6-14%) for detecting memory-
related bugs in server programs.

The CR (Checkpoint-and-Rollback) component takes
checkpoints of the target application and rolls back the
application to a previous checkpoint upon failure. Rx
uses a light-weight checkpointing solution that is de-
signed for surviving software failures. At a check-
point, Rx stores a snapshot of the application into mem-
ory. Similar to the fork operation, Rx copies appli-
cation memory in a copy-on-write fashion to minimize
overhead. The details were discussed in our previous
work [24]. Performing rollback is straightforward: sim-
ply reinstate the program from the shadow process asso-
ciated with the specified checkpoint. The CR also sup-
ports multiple checkpoints and rollback to any of them.

The environment wrapper performs environmental
changes during reexecution. We implement different en-
vironmental changes in different components. For exam-
ple, we implement memory management based changes
by wrapping the memory allocation library calls. The
kernel deals with timing based changes, such as thread
scheduling, signal delay, and other asynchronous timing
events. The proxy process, which will be described next,
manipulates user requests.

To provide the reexecution functionality, Rx uses a

Wrapper
Environment

Control Unit

Sensors

Server Application Clients

Rx System

report errors programmers

Proxy

& Rollback
Checkpoint

Figure 2: System architecture

proxy to buffer messages between the server and its re-
mote clients. The proxy runs as a separate process to
avoid corruption by the server. During normal opera-
tion, the proxy simply bridges between the server and
its clients, and buffers user requests that are made since
the oldest undeleted checkpoint. During a reexecution
attempt from a checkpoint, the proxy replays all the user
requests received since the checkpoint.

To address the output commit problem, the proxy en-
sures that every user request is replied to once and only
once. For each request, the proxy records whether this
request has been answered. If so, a reply made during
reexecution is dropped silently. Otherwise, the reply is
sent to the corresponding client. In other words, only the
first reply goes to the client, no matter whether this first
reply is made during the original execution or a success-
ful reexecution attempt.

For applications such as on-line shopping or the SSL
hand-shake protocol that require strict session consis-
tency (i.e. later requests in the same session depend on
previous replies), Rx can record the signatures (hash val-
ues) of all committed replies for each outstanding ses-
sion, and perform MD5 hash-based consistency checks
during reexecution. If a reexecution attempt generates a
reply that does not match with the associated commit-
ted reply, the session can be aborted abnormally to avoid
confusing users.

The control unit analyzes occurring failures and deter-
mines which checkpoint to roll back to and which envi-
ronmental changes to apply during reexecution. After
each reexecution, it records the effects (success or fail-
ure) into its failure table. This table is used as a refer-
ence for future failures and is also provided to program-
mers for postmortem bug analysis. The control unit also
monitors the recovery time and when it exceeds some
threshold, it resorts to program restart solutions.

4 Preliminary Results
We have investigated some real, buggy server programs,
listed in Table 2. Our analysis shows that these software
failures can be dynamically survived by our methods.

Bugs Applications Environment Modification

data race mysql-4.1.1 change process’s priority or make
CPU scheduling timeslot longer

buffer squid-2.3 allocate memory blocks in an isol-
overflow apache-2.0.47 ated address space, or drop request

double free cvs-1.11.4 delay the recycling of recently
freed buffers

Table 2: Examples of applications that can benefit from Rx

In the evaluation, we design four sets of experiments
to evaluate different key aspects of Rx: (1) the function-
ality of Rx in surviving software failures caused by com-
mon software defects; (2) the performance overhead of

0

20

40

60

80

100

0 0.5 1 1.5 2

T
hr

ou
gh

pu
t (

M
bp

s)

Checkpoint Interval (sec)

Squid

Baseline
Rx

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

)

Checkpoint Interval (sec)

Squid

Baseline
Rx

Figure 3: Rx overhead in terms of throughput and average response
time for Squid. In these experiments, we do not send the bug-exposing
request since we want to compare the pure overhead of Rx with the
baseline in normal cases.

Rx in both server throughput and average response time;
(3) how Rx would behave while under malicious attacks
that continuously send bug-exposing requests triggering
software defects; (4) the benefits of Rx’s mechanism of
learning from previous failures to speed up recovery.

In particular, Figures 3 shows the overhead of Rx for
Squid compared to the baseline (without Rx) for vari-
ous frequencies of checkpointing. We can see that both
throughput and response time are very close to baseline
for all tested checkpoint rates. Results for other server
applications are similar. In this experiment, we use a
workload similar to the one used in [24].

5 Conclusions
In summary, Rx is a non-invasive, informative and safe
method for quickly surviving software failures to pro-
vide highly available service. It does so by reexecuting
the buggy program region in a modified execution envi-
ronment. It can deal with both deterministic and non-
deterministic bugs, and requires little to no modification
to applications’ source code. Because Rx does not force-
fully change programs’ execution by returning specula-
tive values, it introduces no uncertainty or misbehavior
into programs’ execution. Moreover, it also provides ad-
ditional feedback to programmers for their bug diagno-
sis. Our preliminary results show that Rx is a viable solu-
tion and many server programs should be able to benefit
from our approach.

6 Acknowledgments
The authors would like to thank the anonymous review-
ers for their invaluable feedback. We appreciate useful
discussion with the OPERA group members. This re-
search is supported by IBM Faculty Award, NSF CNS-
0347854 (career award), NSF CCR-0305854 grant and
NSF CCR-0325603 grant.

REFERENCES

[1] A. Avizienis. The N-version approach to fault-tolerant software.
IEEE TSE, SE-11(12), 1985.

[2] A. Avizienis and L. Chen. On the implementation of N-version
programming for software fault tolerance during execution. In
COMPSAC, 1977.

[3] J. F. Bartlett. A NonStop kernel. In SOSP, 1981.
[4] A. Bobbio and M. Sereno. Fine grained software rejuvenation

models. In IPDS, 1998.
[5] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle.

Fault tolerance under UNIX. ACM TOCS, 7(1), Feb 1989.
[6] G. Candea, J. Cutler, A. Fox, R. Doshi, P. Garg, and R. Gowda.

Reducing recovery time in a small recursively restartable system.
In DSN, 2002.

[7] G. Candea and A. Fox. Recursive restartability: Turning the re-
boot sledgehammer into a scalpel. In HotOS, 2001.

[8] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
A mirorebootable system – Design, implementation, and evalua-
tion. In OSDI, 2004.

[9] CERT/CC. Advisories. http://www.cert.org/advisories/.
[10] S. Chandra and P. M. Chen. Whither generic recovery from ap-

plication faults? A fault study using open-source software. In
DSN/FTCS, 2000.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Au-
tomatic adaptive detection and prevention of buffer-overflow at-
tacks. In USENIX Security Symposium, 1998.

[12] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of
rollback-recovery protocols in message-passing system. Techni-
cal report, TR CMU-CS-96-181, Carnegie Mellon Univ., 1996.

[13] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. On the analysis
of software rejuvenation policies. In COMPASS, 1997.

[14] J. Gray. Why do computers stop and what can be done about it?
In SRDS, 1986.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In FTCS, 1995.

[16] E. Marcus and H. Stern. Blueprints for High Availability. John
Willey & Sons, 2000.

[17] F. Qin, S. Lu, and Y. Zhou. Safemem: Exploiting ECC-memory
for detecting memory leaks and memory corruption during pro-
duction runs. In HPCA, 2005.

[18] B. Randell. System structure for software fault tolerance. IEEE
TSE, 1(2), Jun 1975.

[19] B. Randell, P. A. Lee, and P. C. Treleaven. Reliability issues in
computing system design. ACM Computer Surveys, 10(2), Jun
1978.

[20] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S.
Beebee, Jr. Enhancing server availability and security through
failure-oblivious computing. In OSDI, 2004.

[21] M. Rinard, C. Cadar, D. Roy, and D. Dumitran. A dynamic tech-
nique for eliminating buffer overflow vulnerabilities (and other
memory errors). In ACSAC, 2004.

[22] D. Scott. Assessing the costs of application downtime. Gartner
Group, May 1998.

[23] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis.
Building a reactive immune system for software services. In
USENIX ATC, 2005.

[24] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. Flashback:
A light-weight extension for rollback and deterministic replay for
software debugging. In USENIX ATC, 2004.

[25] M. Sullivan and R. Chillarege. Software defects and their im-
pact on system availability – A study of field failures in operating
systems. In FTCS, 1991.

[26] W. Vogels, D. Dumitriu, A. Agrawal, T. Chia, and K. Guo. Scal-
ability of the Microsoft Cluster Service. In USENIX Windows NT
Symposium, 1998.

[27] W. Vogels, D. Dumitriu, K. Birman, R. Gamache, M. Massa,
R. Short, J. Vert, J. Barrera, and J. Gray. The design and ar-
chitecture of the Microsoft Cluster Service. In FTCS, 1998.

[28] Y.-M. Wang, Y. Huang, and W. K. Fuchs. Progressive retry for
software error recovery in distributed systems. In FTCS, 1993.

