
OperatingSystemsShouldSupportBusinessChange
Jeffrey C. Mogul

HP Labs, Palo Alto
Jeff.Mogul@hp.com

Abstract
Existing enterprise information technology (IT) sys-

tems often inhibit businessflexibili ty, sometimes with
dire consequences. In this position paper, I argue that
operating system research should be measured,among
other things,againstour abilit y to improve the speedat
which businessescan change. I describe someof the
ways in which businessesneed to change rapidly, spec-
ulate about why existing IT infrastructuresinhibit use-
ful change,and suggestsomerelevantOSresearch prob-
lems.

1 Intr oduction
Businesseschange. Theymerge;theyspli t apart;they

reorganize. Theylaunchnew products andservices,re-
tire old ones,andmodify existing onesto meet changes
in demand or competition or regulations. Agile busi-
nessesaremore likely to thrive than businessesthat can-
not changequickly.

A businesscanlack agilit y for manyreasons, but one
commonproblem(andonethat concernsusascomputer
scientists) is the inflexibility of its IT systems. “Every
businessdecision generatesan IT event” [1]; For ex-
ample, a decision to restrict a Web site with product
documentation to customers with paid-up warranties re-
quires a linkage betweenthatWebsite andthewarranty
database.If theIT infrastructuredealswith such“event-
s” slowly, the business as a whole will respond slowly;
worse,business-level decisions will stall due to uncer-
tainty about IT consequences.

What doesthis have to do with operating systems?
Surely thebulk of business-changeproblemsmustbere-
solved at or above the application level, but many as-
pects of operating systemresearch aredirectly relevant
to the significant problems of business change. (I as-
sume a broad definition of “operating system” research
thatencompassestheentire, distributed operating envir-
onment.)

Of course, support for changeis just one of many
problems facedby IT organizations(ITOs), but this pa-
per focusses on business changebecause it seems un-
derappreciatedby the systems software research com-
munity. We aremuch better at problemsof performance,
scale, reliabili ty, availabili ty, and(perhaps)security.

2 IT vs. business flexibili ty
Inflexible IT systems inhibit necessary business

changes. The failure to rapidly completean IT upgrade
can effectively destroy thevalueof a majorcorporation
(e.g., [12]). Thereis speculation that theSept. 11, 2001
attacksmight have been prevented if the FBI had had
moreflexible IT systems [17, page77]. Even when IT
inflexibil ity doesnot contribute to majordisasters, it fre-
quently imposes costsof hundredsof milli onsof dollars
(e.g., [13,14]).

The problem is not limited to for-profit businesses;
other large organizations have similar linkagesbetween
IT andtheir needsfor change. For example, the mili t-
ary is a major IT consumer with rapidly evolving roles;
hospitals aresubject to new requirements (e.g., HIPAA;
infection tracking); universities innovate with IT (e.g.,
MIT' s OpenCourseWare); even charities must evolve
their IT (e.g., for tracking requirementsimposed by the
USA PATRIOT Act). The commonfactor is a largeor-
ganization thatthinks in terms of buying “enterprise IT”
systemsandservices,not just desktopsand servers.

3 Why is application deployment soslow?
IT organizations often spend considerably more

moneyon “software lifecycle” costs than on hardware
purchases. Thesecostsincludesoftwaredevelopment,
testing,deployment, andmaintenance. In 2004,8.1% of
worldwide IT spending wentto server andstoragehard-
warecombined,20.7% went to packagedsoftware, but
41.6%went to “services,” including 15.4% for “imple-
mentation” [15]. Even after purchasing packagedsoft-
ware,IT departmentsspendtonsof money actually mak-
ing it work [12].

Testing and deploymentalso imposedirect hardware
costs;for example, roughly a third of HP's internal serv-
ersarededicatedto thesefunctions, and the fraction is
larger at some other companies[21]. These costs are
high becausethese functions take far too long. For
example,it can take anywhere from abouta month to
almost half a year for an ITO to certify that a new
server model is acceptable for use acrossa large cor-
poration's data centers. (This happensbefore significant
application-level testing!)

It would be useful to know why the process takes
so long, but I have been unableto discover any care-
ful categorization of the time spent. (This itself would

be� a good research project.) In informal conversations,
I learnedthat a major cause of the problem is the huge
range of operating system versions that mustbesuppor-
ted; although ITOstry to discouragetheuseof obsolete
or modified operating systems,they must often support
applicationsnot yet certified to usethemostup-to-date,
vanill a release. The large number of operating system
versionsmultiplies the amount of testing required.

Virtual machinetechnology can reduce themultiplic-
ationeffect, sinceVMs imposeregularity abovethevari-
abili ty of hardware platforms. Oncea set of operating
systems has been testedon top of a given VM release,
andthat releasehasbeentestedon thedesired hardware,
theITO canhave somefaith that any of these operating
systems wil l probably work on that hardware with that
VM layered in between. However, this stil l leavesopen
the problem of multiple versionsof the VM software,
andVMs arenot alwaysdesirable(e.g., for performance
reasons).

The long lead time for application deployment and
upgradescontributes directly to business rigidity. A
few companies (e.g., Amazon,Yahoo, Google) are con-
sidered “agile” becausetheir IT systemsare unusually
flexible, but most large organizations cannot seem to
solve thisproblem.

4 Where hasOSresearch gonewrong?
At this point, the reader mutters “But, but, but ... we

operating systemresearchersare all about `flexibili ty!'. ”
Unfortunately, it hasoftenbeenthewrongkind of flex-
ibili ty.

To oversimplify a bit, the two major research initi-
atives to provide operating system flexibili ty have been
microkernels(mix & match services outsidethekernel)
andextensible operatingsystems (mix & match services
inside thekernel).Theseinitiatives focussedon increas-
ing the flexibili ty of system-level servicesavailable to
applications,andon flexibility of operating systemim-
plementation. They did not really focus on increasing
application-level flexibili ty (perhapsbecausewehave no
goodway to measurethat;seeSection 6).

Outsideof a few nichemarkets,neither microkernels
nor extensible operatingsystemshavebeensuccessful in
theenterpriseIT market. Thekindsof flexibili ty offered
by either technology seemsto createmoreproblemsthan
theysolve:� The ITO (or systemvendor)endsup with no idea

whatdaemonsor extensionstheuser systemsareac-
tually running, which makes support much harder.
It is hard to point the finger whensomething goes
wrong.� The ITO hasno cleardefinition of what configura-
tionshave been tested, andendsup with a combin-
atorial explosionof testing problems.(“Safe” exten-
sions are not really safe at the level of thewhole IT

system; they just avoid the obviousinterface viola-
tions. Bad interactionsthrough goodinterfacesare
not checked.)� The ITO hasmoredifficulty maintaining a consist-
ent execution environmentfor applications, which
meansthatapplication deploymentis even more dif-
ficult.

Onemight arguethat increased flexibili ty for theoperat-
ing systemdesignercantooeasily lead to decreased flex-
ibil ity for the operating system user; it's easierto build
novel applicationsonbedrockthanonquicksand.

In contrast, VM research hasled to market success.
The term “vi rtual machine” is applied both to systems
that createnovel abstract execution environments(e.g.,
Java bytecodes)andthosethat expose a slightly abstract
view of a real hardwareenvironment (e.g., VMwareor
Xen [4]). The former model is widely seen asencour-
agingapplication portability through the provision of a
standardized foundation; the latter model has primarily
been viewed by researchersassupportingbetter resource
allocation, availabili ty, andmanageability. But thelatter
modelcan also be used to standardize execution envir-
onments(as exemplified by PlanetLab [5] or Xenoserv-
ers[7]); VMs doaid overall IT flexibility.

5 How could OSresearch help?
In this section I suggesta few of the many operating

systemresearch problems that might directly or indir-
ectly improve support for businesschange.

5.1 OSsupport for guaranteedsameness
If uncontrolled or unexpectedvariation in theoperat-

ing environmentis the problem, can we stampit out?
That is,withoutabolishing all futurechangesand config-
urationoptions,canwepreventOS-level flexibili ty from
inhibiting business-level flexibilit y?

One way to phrasethis problemis: canwe prove that
two operating environments are, in their aspectsthat af-
fect application correctness,100.00000000% identical?
That is, in situationswhere we do not wantchange,can
we formally prove that wehave “sameness”?

Of course,I do not mean that operating systemsor
middleware should never be changedat all. Clearly,
we want to allow changesthat fix security holes or
other bugs, improvements to performance scalabilit y,
andother useful changes that are irrelevantto thestabil-
ity of theapplication. I will usethe term “operationally
identical” to imply anotionof useful samenessthatis not
too rigid.

If wecould provethathost
�

isoperationally identical
to host � , then we could have more confidence that an
application, oncetestedon host

�
, would run correctly

on host � . More generally,
�

and � could each be
clusters ratherthanindividualhosts.

Similarly, if we could prove that
���

is operationally

identi
�

cal to �	��
������
���� , anapplication testedonly on ���
might besafeto deploy on �	�
�������
���� .

It seems likely that this would have to be a formal
proof, or elsean ITO probably would not trust it (and
would have to fall back on time-consuming traditional
testing methods). However, formal proof technology
typically hasnot beenaccessible to non-experts.Perhaps
by restrictinganautomatedproof system to asufficiently
narrow domain, it could bemade accessible to typical IT
staff.

On theotherhand, if an automatedproof systemfails
to prove that � and � are identical, that should reveal
a specific aspect (albeit perhapsoneof many) in which
theydiffer. That could allow anITO eitherto resolvethis
dif ference(e.g., by adding another configuration itemto
an installation checklist) or to declareit irrelevant for a
specific setof applications.Theproof could then bereat-
tempted with an updated “stop list” of irrelevantfeatures.

It is vital thata sameness-proof mechanismcover the
entire operating environment, not just the kernel's API.
(Techniques for sameness-by-construction might be an
alternative to formal proof of sameness, but it is hard
to seehow this could be applied to entire environments
rather thanindividual operating systems.)Environmental
features can often affect application behavior (e.g., the
presenceand configuration of LDAP services, authen-
tication services, firewalls, etc. [24]). However, this
raises thequestion of how to define“the entire environ-
ment” without including irrelevant details, suchasspe-
cific hostIP addresses,andyetwithoutexcludingtherel-
evantones,such asthe correct CIDR configuration.

Thetraditional IT practice of insisting thatonly a few
configuration variants are allowed can ameliorate the
samenessproblem at time of initial application deploy-
ment. However, environments cannot remain static; fre-
quent mandatory patchesare the norm. But it is hard
to ensure that every host has been properly patched, es-
pecially sincepatching often affects availabil ity andso
mustoften be donein phases.For this and similar reas-
ons,sameness can deteriorateover time,which suggests
thatasameness-proof mechanismwould haveto berein-
vokedat certainpoints.

Business customers are increasingly demanding that
system vendorspre-configurecomplex systems, includ-
ing software installation, before shipping them. This
can help establish a baseline for sameness,but vendor
processessometimeschange during a product lifetime.
A sameness-proof mechanism could ensurethat vendor
processchangesdonot leadto environmental dif ferences
thatwould affect application correctness.

5.2 Quantifying the valueof IT
A business cannoteffectively manage an IT system

when it does not know how much businessvalue that
system generates.Mostbusinessescan only estimatethis

value, for lack of any formal way to measureit. Simil-
arly, a businessthat cannotquantify the value of its IT
systemsmight not know when it is in need of IT-level
change.

ITOs typically have budgetsseparate from the profit-
and-lossaccountabilit y of customer-facingdivisions, and
thus have much clearermeasuresof their costs than of
their benefits to the entire business. An ITO is usually
driven by its local metrics (cost, uptime, number of help-
deskcalls handled perhour). ITOs have a much harder
time measuring what value its users gain from specific
practicesandinvestments,andwhat costsareabsorbed
by its users.As a result, largeorganizationstendto lack
global rationality with respect to their IT investments.
This can lead to either excessive or inadequate caution
in initiating business changes.(It is alsoa seriousprob-
lem for accountantsand investors,because“ theinabili ty
to account for IT value means [thatit is] not reflected on
the firm's [financial reports]”, often creating significant
distortionsin thesereports [23].)

Clearly, mostbusinessvalueis createdby applications,
ratherthan by infrastructure andutil itiessuchasbackup
services [23]. This suggests that mostwork on value-
quantification mustbe application-specific; why should
we think operating system research has anything to of-
fer?

One key issueis that accounting for value,andespe-
cially in ascribing that value to specific IT investments,
can be quite difficult in thekinds of heavily shared and
multiplexedinfrastructuresthat wehavebeen sosuccess-
ful atcreating. Technologiessuchastimesharing,replic-
ation, DHTs, packet-switchednetworks andvirtualized
CPUs,memory, and storagemakevalue-ascriptionhard.

This suggests that the operating environmentcould
track application-level “service units” (e.g., requestsfor
entire Webpages)alongwith statistics for responsetime
andresourceusage. Measurementsfor each category of
service unit (e.g.,“catalog search” or “shoppingcartup-
date”) could thenbe reported, along with direct meas-
urements of QoS-related statistics and of what IT assets
wereemployed. The Resource Containers abstract [2]
providesasimilar feature,but would haveto beaugmen-
ted to includetrackinginformation and to span distrib-
uted environments.Magpie [3] alsotakes somestepsin
this direction.

Accounting for value in multiplexed environmentsis
notan easy problem,andit might beimpossible to getac-
curateanswers. We might belimited to quantifying only
certain aspectsof IT value,or wemight haveto settle for
measuring “negative value,” suchas theopportunity cost
of unavailabil ity or delay. (An IT change that reduces a
delaythat imposesa clear opportunity cost hasa fairly
obviousvalue.)

5.3 Pricing for software licenses
Anothervalue-relatedproblem facing ITOsis the cost

of softwarelicenses. Licensefees for many major soft-
ware products are basedon the numberof CPUsused,
or on total CPU capacity. It is now widely understood
that this simple modelcan discouragethe useof tech-
nologiesthatresearchers consider “obviously” good, in-
cluding multi-coreandmulti -threadedCPUs,virtualized
hardware, grid computing [22], and capacity-on-demand
infrastructure. Until softwarevendors have a satisfact-
ory alternative, this “ tax on technology innovation with
little return” [8] could distort ITO behavior, andinhibit a
“businesschange” directly relevant to our field (albeit a
one-timechange).

The solution to the software pricing crisis (assuming
that OpenSource software cannot immediately fill all
thegaps)is to price basedon value to the business that
buys the software; this providesthe right incentivesfor
bothbuyerandseller. (Softwarevendorsmight imposea
minimum price to protect themselves against incompet-
entcustomers.)

Lots of software is already priced per-seat (e.g., Mi-
crosoft Office and many CAD tools) or per-employee
(e.g.,Sun'sJavaEnterpriseSystem[18]), but thesemod-
elsdo notdirectly relatebusinessvalueto softwarecosts,
and might not extend to software for service-oriented
computing.

Suppose one could instead track the number of
application-level service units successfully deliveredto
users within proscribed delay limits; then application
feescould bechargedbasedon theseserviceunits rather
thanon crudeproxiessuchas CPUcapacity. Also, soft-
ware vendorswould have a direct incentive to improve
theefficiency of their software,sincethatcould increase
thenumberof billableserviceunits. Suchamodelwould
require negotiation over the price per billable service
unit, but by negotiating at this level, thesoftwarebuyer
would have amuch clearerbasis for negotiation.

Presumably, basing software fees on service units
would require a secureand/or auditablemechanism for
reportingserviceunitsback to the software vendor. This
seems likely to require infrastructural support (or else
buyersmight beable to conceal serviceunits from soft-
ware vendors). SeeSection 5.5 for more discussion of
auditabili ty.

One might also want a systemof trustedthird-party
brokers to handle the accounting, to prevent software
vendors from learning too much, too soon, about the
businessstatistics of specific customers. A broker could
anonymize the per-customeraccounting, and perhaps
randomly time-shift it, to provideprivacyaboutbusiness-
level details while maintaininghonestcharging.

5.4 Name spaces that don't hinder organiza-
tional change

Operating systems and operating environments in-
clude lots of name spaces; naming is key to much of
computersystemsdesignandinnovation.1 Wenamesys-
temobjects(files, directories, volumes, storageservers,
storage services), network entities (links, switches, in-
terfaces, hosts,autonomoussystems), and abstract prin-
cipals(users,groups,mailboxes,messagingservers).

What happens to these namespaceswhenanorganiz-
ations combine or establish a new peering relationship?
Often these business events lead to name space prob-
lems,either outright conflicts (e.g., two servers with the
samehostname)or moreabstract conflicts (e.g.,dif ferent
designs for name space hierarchies). Fixing thesecon-
flicts is painful, slow, error-prone, and expensive. Alan
Karp hasarticulatedtheneedto “designfor consistency
under merge” to avoid theseconflicts[10].

And what happens to name spaceswhen an organiz-
ation is split (e.g., as in a divestiture)? Somenames
might have to be localizedto one partition or another,
while other namesmight have to continueto resolve in
all partitions. One might imagine designing a naming
systemthat supports “completenessafterdivision,” per-
hapsthrough ameansto tagcertain namesandsubspaces
as“clonable.”

When systems researchersdesign new name spaces,
wecannot focusonly ontraditional metrics(speed,scale,
resiliency, security, etc.);wemust alsoconsider how the
designsupports changesin name-spacescope.

5.5 Auditabil ity for outsourcing
IT practice increasingly tends towards outsourcing

(distinct from “offshoring”) of critical business func-
tions. Outsourcing can increasebusiness flexibility, by
giving a business immediate access to expertise and
sometimes by better multiplexing of resources, but it
requires the businessto trust the outsourcing provider.
Outsourcing exposes the distinction between security
and trust. Security is a technical problem with well-
definedspecifications,on which onecan, in theory, do
mathematical proofs. Trust is a social problem with
shifting, vaque requirements;it dependssignificantly on
memoryof pastexperiences.Justbecauseyou canprove
to yourselfthatyour systemsaresecureandreliable does
notmean that youcan getyourcustomersto entrusttheir
dataandcritical operations to you.

This is a variant of what economists call the
“principal-agentproblem.” In othersettings,a principal
could establish its trust in an agent using a third-party
auditor, who hassufficient access to the agent's envir-
onmentto check for evidenceof incorrect or improper
practices. Theauditor hasexpertisein thischecking pro-
cessthat the principal does not, and alsocan investigate
agents who serve multiple principalswithout fear of in-

forma� tion leakage.
Pervasiveoutsourcingmight thereforebenefitfrom in-

frastructural support for auditing; i.e., theoperating en-
vironment would support monitoring points to provide
“sufficient access” to third-party auditors. Given that
much outsourcing will be done at the level of operat-
ing systeminterfaces, someof theauditing supportwil l
comefrom the operating system. For example,thesys-
tem might needto provide evidence to prove that prin-
cipal A cannot possibly see thefiles of principal B, and
alsothat this hasneverhappened in thepast.

6 Operating outside our comfort zone
Theproblems of enterprisecomputing, and especially

of improving business-level (rather than IT) metrics, is
far outside the comfort zone of mostoperating system
researchers.Problemsinclude� The applications are not the ones we useor write

ourselves;it is hardto do operating systemresearch
using applicationsonedoesnot understand.� Most of theseapplicationsarenot OpenSource; re-
searcherscannotafford them,andsomevendorsban
unauthorizedbenchmarking.� The applications can be hard to install. A typical
SAPinstallationmight involvemillionsof dollarsof
consultantfeesover monthsor evenyearsto custom-
ize it [11].� We do not have a good description of “real work-
loads” for theseapplications.

In addition, many of the problems inhibiting business
changeare cultural, not technical. That does not mean
thatwe areexcusedfrom addressingthe technical chal-
lenges, but this is an engineering science, soour results
needto respect theculture in which they would beused.
That meansthat computerscienceresearchersneed to
learnaboutthatculture,not justcomplainaboutit.

6.1 What about metrics?
Perhaps thebiggestproblem is thatwe lack quantified

metrics for thingslike “businessflexibili ty.” (Low-level
flexibili ty metrics, suchas “ time to add a new device
driver to thekernel,” are not theright concept.) Lacking
themetrics,wecannotcreatebenchmarksor evaluateour
ideas.

Rob Pike hasarguedthat “ In a misguidedattempt to
seemscientific, there'stoo muchmeasurement: perform-
anceminutiaeandbadcharts.... Systemsresearch can-
not be just science; there mustbe engineering, design,
andart.” [20]. But we must measure,becauseotherwise
we cannotestablish the value of IT systemsand pro-
cesses;however, weshould not measurethewrongthings
(“performanceminutiae”) simply becausethosearethe
easiest for usto measure.

Metrics for evaluating how well IT systemssupport
businesschange will not be assimple as, for example,

measuring Web server transaction rates, for at least two
reasons. First,becausesuchevaluationscannotbesepar-
atedfrom context; successfulchange inevitably depends
on people and their culture, as well as on IT. Second,
becausebusiness change events, while frequent enough
to be problematic, are much rarer and less repeatable
than almost anything elsecomputer scientistsmeasure.
We will have to learn from other fields, suchas human
factors research andeconomics,ways to evaluatehow IT
systemsinteract with largeorganizations.

I will speculateon a few possible metrics:� For software deployment: It might be tempting to
simply measurethetimeit takesto deploy anapplic-
ation onceit hasbeen tested.However, such timing
oftendependstoomuchonuncontrollable variables,
suchas competing demands on staff time. A more
repeatablemetric would be thenumberof new prob-
lems found in the processof moving a “working”
application from a test environmentto a production
environment. The use of bug ratesasa metric was
proposed in a similar context by Doug Clark [6],
who pointed out that what matters is not reducing
thetotal number of bug reports, but finding them as
soon as possible, andbefore a product ships to cus-
tomers.

Nagaraja et al. reported on small-scale measure-
mentsof how frequently operatorsmademistakesin
reconfiguring Internetapplications [16]. They de-
scribed a technique to detect many sucherrors auto-
matically, using parallel execution of theold system
andthenew system, comparing theresults, with the
new systemisolated to prevent any errors from be-
coming visible. Their approach might begeneraliz-
able to testing for environmental sameness.

Onemight alsocrudely measurea system's sup-
port for deploymentof updatedapplicationsby sub-
jectinganapplication to increasingly drastic changes
until something breaks. For example, perhaps
the operating environment cansupport arbitrary in-
creasesin the number of server instancesfor an ap-
plication, but not in the numberof geographically
separated sites.� For quantifying IT value: Supposethat an enter-
prise'sIT systemsgenerated estimatesof theirvalue.
Oneway to testtheseestimateswould beto compare
their sum to the enterprise's reported revenue,but
this probably would not work: revenue reports are
too infrequentand tooarbitrary, and it would require
nearly completevalue-estimation coverageover all
IT systems.Instead,onemight be ableto find cor-
relations between the IT-value estimatesfrom dis-
tinct systemsandtheshort-termper-productrevenue
metrics maintainedby many businesses.If the cor-
relationscanbeusedfor prediction (e.g.,theypersist

after a systemimprovement) thentheywould valid-
ate theIT-valueestimates.

In theend, many important aspects of IT flexibil ity wil l
never be reduced to simple, repeatable metrics. We
should not let this becomean excuseto give up entirely
on theproblem of honestmeasurement.

7 Grand Challenge... or hopelesscause?
Section 6 describes somedaunting problems. How

canwe possibly do research in this space? I think the
answeris “becausewe must.” Support for CSresearch,
both from governmentandindustry, is declining [9, 19].
If operating system research cannot help solve critical
businessproblems,ourfield will shrink.

Thesituation is not dire. Many researchersareindeed
addressing business-level problems. (Space prohibits a
lengthy description of suchwork, andit would beunfair
to pick out just a few.) But I think we mustdo better
at defining theproblemsto solve, and at recognizing the
valueof their solution.

Acknowledgments
In preparing this paper, I had help from many col-

leaguesatHP, includingMary Baker, TerenceKelly, Bil l
Martorano,Jerry Rolia, andMehul Shah. The HotOS
reviewersalsoprovided usefulfeedback.

References
[1] Q&A with Robert Napier, CIO at Hewlett-

Packard. CIO Magazine, Sep. 15 2002.
http://www.cio.com/archive/091502/napier.html.

[2] G. Banga, P. Druschel, andJ. C. Mogul. Resourcecon-
tainers: A new facility for resourcemanagement in server
systems. In Proc. OSDI, pages45–58, New Orleans,LA,
Feb. 1999.

[3] P. Barham,A. Donnelly, R. Isaacs,andR.Mortier. Using
Magpie for request extraction and workload modeling.
In Proc. 6th OSDI, pages 259–272, San Francisco, CA,
Dec.2004.

[4] P. Barham,B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In Proc. SOSP-19, pages
164–177, 2003.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and
M. Wawrzoniak. Operating System Support for
Planetary-ScaleServices. In Proc. NSDI, pages253–266,
SanFrancisco, CA, Mar. 2004.

[6] D. W. Clark. Bugs are Good: A Problem-Oriented
Approach to the Management of Design Engineering.
Research-Technology Management, 33(3):23–27, May-
June1990.

[7] K. Fraser, S.M. Hand, T. L. Harris, I. M. Leslie, andI. A.
Pratt. The Xenoserver computing infrastructure. Tech.
Rep. UCAM-CL-TR-552, Univ. of Cambridge, Com-
puterLab., Jan. 2003.

[8] Garner, Inc. Gartner says cost of software li -
censes could increaseby at least 50 percent by 2006.

http://www3.gartner.com/press releases/
asset 115090 11.html, Nov. 2004.

[9] P. Harsha. NSF budget takes hit in final appropri-
ationsbill . Computing Research News, 17(1), Jan. 2005.
http://www.cra.org/CRN/articles/jan05/harsha.html.

[10] A. H. Karp. Lessons from E-speak. Tech.
Rep. HPL-2004-150, HP Labs, Sep. 2004.
http://www.hpl.hp.com/techreports/2004/HPL-2004-
150.html.

[11] C. Koch. Lump it and like it. CIO Magazine, Apr. 15
1997. http://www.cio.com/archive/041597/lump.html.

[12] C. Koch. AT&T Wireless Self-
Destructs. CIO Magazine, Apr. 15 2004.
http://www.cio.com/archive/041504/wireless.html.

[13] C. Koch. Whenbadthingshappen to goodprojects.CIO
Magazine, Dec. 1 2004. http://www.cio.com/
archive/120104/contingencyplan.html.

[14] J. C. McGroddy and H. S. L. Editors. A Review of
the FBI's Trilogy Information Technology Moderniza-
tion Program.http://www7.nationalacademies.org/cstb/
pub fbi.html, 2004.

[15] S.Minton, E. Opitz, J.Orozco, F. Chang, S.J.Frantzen,
G. Koch, M. Coughlin, T. G. Copeland, andA. Tocheva.
Worldwide IT Spending 2004-2008 Forecast. IDC docu-
ment #32321, Dec. 2004.

[16] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and
T. D. Nguyen. Understanding andDealing with Operator
Mistakesin Internet Services. In Proc. OSDI, pages61–
76, San Francisco,CA, Dec 2004.

[17] National Commission on Terrorist Attacks Upon the
UnitedStates. Final report,2004.

[18] J. Niccolai and D. Tennant. Sun pricing model
impresses users. ComputerWeekly.com, Sep. 2003.
http://www.computerweekly.com/Article125119.htm.

[19] M. Pazzani, K. Abdali, G. Andrews, and S. Kim.
Cise update: Adjusting to the increase in propos-
als. Computing Research News, 16(5), Nov. 2004.
http://www.cra.org/CRN/articles/nov04/pazzani.html.

[20] R. Pike. Systems software research is irrelevant.
http://herpolhode.com/rob/utah2000.pdf, 2000.

[21] D. Rohrer. Pers. comm., 2005.
[22] P. Thibodeau. Software licensing emerges as

grid obstacle. ComputerWorld, May 2004.
http://www.computerworld.com/printthis/2004/
0,4814,93526,00.html.

[23] J. Til lquist and W. Rodgers. Using asset specificity and
asset scope to measure the value of IT. Comm. ACM,
48(1):75–80,Jan. 2005.

[24] J. Wilkes, J. Mogul, and J. Suermondt. Util ification. In
Proc. 11th SIGOPS European Workshop, Leuven, Bel-
gium,Sep. 2004.

Notes

1I think RogerNeedhamsaidthat (moreeloquently),
but I haven't beenable to track down a quote.

