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Abstract 

Faced with a proliferation of distributed systems in research and production groups, we have devised the WiDS eco-
system of technologies to optimize the development and testing process for such systems.  WiDS optimizes the 
process of developing an algorithm, testing its correctness in a debuggable environment, and testing its behavior at 
large scales in a distributed simulation.  We have developed many distributed protocols and systems using WiDS, 
including a large-scale backup service that is robust enough to be deployed. We have also used WiDS to perform 
ultra-large scale (>1million instances) simulation of a production protocol. In this paper, we describe the principles 
and design of WiDS, share the lessons that we learned, and discuss on-going research that will further reduce pro-
gramming and debugging difficulties of distributed systems.  

                                                 
† Work is done as intern in Microsoft Research Asia. 

1. Introduction 

Research and development of distributed system has 
always been a tricky business. The process has many 
different stages, and each interdependent stage carries 
different requirements. The protocols must first be fully 
specified and proved. A correct implementation that 
follows is no trivial matter, as debugging a distributed 
system is a known hard problem. For the purpose of 
developing Internet-scale P2P systems [1][2][3], per-
haps the most challenging is to fully understand any 
performance issues before the system is deployed. 

To mitigate some of these difficulties, we find that a 
systematic approach is helpful. While the protocol 
specification, modeling, and proof remain too difficult 
to be incorporated in an integrated toolkit, we have 
united the rest of the processes in a single integrated 
toolkit called WiDS (WiDS implements Distributed 
System).  

The general philosophy of WiDS can be summarized as 
“code once and run many ways”. WiDS adopts an ob-
ject-oriented and event-driven programming model, 
and provides a small and straightforward set of APIs to 
support message exchanges and timers. Once a distrib-
uted protocol is developed, it can be simulated within a 
single address space on a single machine for debugging 

purposes, simulated on a cluster of machines to under-
stand its macro-behavior, or deployed and run in the 
real. Users work with the same code base across differ-
ent development stages and link it to appropriate librar-
ies accordingly.  

We have researched and developed many of our proto-
cols and systems using WiDS, including a large scale, 
distributed backup service [4] that is robust enough to 
be deployed in MSR-Asia this year. We have also done 
extensive testing for production code of a P2P protocol 
[5] of more than one million instances, using hundreds 
of clustered PCs. To our knowledge, this is the largest 
P2P simulation that has ever been attempted. While all 
these exercises have demonstrated the value of such an 
integrated toolkit, our experiences also point out more 
challenging research directions to further reduce pro-
gramming difficulties as well as to improve the debug-
ging process. 

Section 2 gives an overview of WiDS. We summarize 
our experience of performing complete system devel-
opment and large-scale testing in Section 3. We discuss 
several new research focuses in Section 4. Section 5 
discusses related work, and we conclude in Section 6. 



 

2. The WiDS Ecosystem 

To serve as a generic ecosystem for distributed system 
development, WiDS needs to achieve several specific 
goals. First, there should be one single code base that is 
easily shared across different development stages. It is 
hazardous to maintain one code for simulation and an-
other for real deployment, and try to sync up as pro-
gress is made. Second, while a distributed application is 
inherently difficult to debug, we would like the users to 
spend their debugging energy in one address space as 
much as possible.  Finally, when required, WiDS 
should support large-scale performance study for sys-
tem scales approaching that of the real deployment. 

Since a distributed system is essentially a collection of 
autonomous state machines, WiDS adopts an event-
driven and object-oriented programming model, and is 
implemented using C++. A WiDS object represents a 
protocol instance or a service, and is identified by the 
tuple <WIDSNODE, WIDSSTUB>, analogous to how a 
networked service is addressed in the real world. WiDS 
objects exchange asynchronous messages to each other. 
Each message is dispatched to the target object’s corre-
sponding handler, which was declared using a macro. 
WiDS also provides periodic and one-time timers so 
that users can implement various failure detection 
mechanisms.  
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Figure 1. The ecosystem of WiDS-based protocol devel-
opment and its five major components. The shaded ones 
(WiDS-Mod and WiDS-Replay) are under development. 

These APIs isolate a WiDS-programmed protocol from 
any particular runtime that users want to employ. The 
WiDS runtimes fall into two general categories. The 
first is the simulation mode, where the runtime inserts 
and dispatches events through event wheel(s). Simula-
tion mode supports pluggable topology models, allow-
ing users to exercise different code paths in the protocol. 
The timestamp of a message is the source object’s vir-
tual clock plus the delay specified by the topology 
model. Eventwheel(s) ensure the chronological order of 
message execution, which in turn advances the simula-
tion time.  The simulation can be run on a single ma-
chine (linked with WiDS-Dev), enabling debugging of 
multiple instances of a protocol in the same address 

space. Alternatively, the simulation can be run in paral-
lel on a cluster of machines to investigate performance 
issues for very large scales (linked with WiDS-Par). In 
the network execution mode, WiDS provides a socket-
based library (WiDS-Comm), yielding a system ready 
to run in the real network environment. WiDS users 
always work with the same code base, invoking differ-
ent runtimes by simply re-linking to different libraries 
according to their needs. Figure 1 summarizes these 
components of the WiDS development lifecycle. Two 
new members of the WiDS package, WiDS-Mod and 
WiDS-Replay, will be introduced in Section 4. 
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Figure 2. The WiDS architecture. Different runtimes are 
shaped by integrating some of the four modules: topology 

model, networking, system timer and event wheel. 

Figure 2 depicts the WiDS runtimes. It contains topol-
ogy models that generate latency and state for links 
between two simulated nodes, a crystal to trigger physi-
cal time signals, networking support based on native 
sockets to transport messages across physical machine 
boundaries, and an event wheel that stores all the events 
encapsulating messages, timers, and synchronous calls. 
Different WiDS runtimes are shaped by integrating 
some of these functionalities and, more importantly, 
different scheduling mechanism in the event wheel. 
There is a watchdog facility to check the progress of 
events, which is especially important to deal with strag-
glers in large-scale simulation. The monitor offers in-
teractive simulation ability so that the user can break or 
step at event granularity. Along with the protocol, the 
user must also supply a driver program to instantiate 
the protocol instances, feed inputs, and inject events. In 
the simulation mode, the driver also specifies the topol-
ogy model and node behavior (e.g., crash or create).  

The WiDS parallel simulation is master-slave archi-
tected and proceeds in rounds. During each round, the 
master calculates a safe window (of simulation time) by 
looking at the head events of the slaves, and then in-
forms the slaves to execute any events within that win-
dow. This barrier model becomes increasingly ineffi-
cient with more machines. To improve simulation per-
formance, we have developed an optimization called 



 

Slow Message Relaxation (SMR) that simulates a win-
dow of ticks per round. This raises the possibility that a 
slave machine has already advanced its simulation 
clock when an event with a smaller timestamp arrives. 
We call such a message a Slow Message, and simply set 
its timestamp to the node’s current clock value before 
passing it to its handler. The rationale is that this is as if 
the message had suffered some extra delay in the net-
work. A correctly designed distributed protocol should 
have already handled any network-jitter generated ab-
normality. However, slow messages may lead to prob-
lems that otherwise would not have appeared such as 
false time-outs, and may change the statistics that the 
simulation is measuring as well. Our analysis shows 
that as long as the window width is kept under some 
value (automatically derived from the timer APIs), 
there will be negligible impact. Furthermore, the win-
dow width can be adaptively adjusted to achieve the 
optimal performance at runtime. We have verified that 
this optimization achieves an order of magnitude per-
formance improvement simulating several large scale 
P2P protocols, without compromising the statistical 
accuracy of the simulation results.  

3. Experience with WiDS 

3.1 Complete system development 

One of the complete distributed systems we have de-
veloped is the BitVault data retention platform [4]. 
BitVault employs commodity PCs as building blocks to 
construct a distributed backup service that is scalable, 
highly reliable, and highly available. Topology-wise, 
nodes are arranged in a ring. At the bottom layer, there 
is a voting-based failure detector to monitor the health 
of each node by a constant number of its neighbors. A 
failure or new node join event is then broadcasted in 
O(logN) steps to all other members, and anti-entropy is 
employed to ensure the eventual convergence of mem-
bership. These protocols comprise an eventual consis-
tent membership protocol. Above that, a placement 
policy places multiple replicas on a constant number of 
nodes, and a distributed indexing mechanism tracks the 
location of an object. We use massively parallel repair 
to deliver order-of-minutes repair time for a failed disk 
upon the notification of membership change. There is a 
scalable monitoring infrastructure embedded in the 
system to trigger load balancing automatically. BitVault 
is entirely developed and maintained using WiDS.  
Each BitVault node comprises several objects that 
implement different functions (e.g., membership, moni-
toring, index, data etc.), and these objects communicate 
with each other using WiDS messages. BitVault is ro-
bust enough that we plan to roll out a 32-node installa-

tion as an interactive backup service in the first half of 
this year. 

Although WiDS significantly improved the develop-
ment process of BitVault, during the course we have 
learned several important lessons that lead to the further 
development and research focuses for WiDS. First, 
while the event-based programming model is a natural 
fit to implement state machines, it is still difficult to 
program and debug. This is especially true for protocols 
that have multiple phases. For those protocols, the 
event model will spread the protocol logic in multiple 
event handlers, and the program must therefore explic-
itly handle the context moving from one handler to the 
other. A protocol that is multi-phased but deals with a 
single remote party is most easily programmed using a 
single thread with remote procedure calls (RPC). How-
ever, the thread model falls short if the protocol has a 
concurrent phase that involves multiple parties, since it 
must spawn separate threads to deal with these parties 
and then sync-up later on. The thread model must also 
carefully guard critical sections, which is non-trivial 
and something that the event model does not need to 
handle. Many distributed protocols, however, are in 
fact both multi-phase and multi-partied (e.g., two-phase 
commit). A good number of BitVault protocols fall into 
this category. Therefore, in terms of programming ef-
fort, neither the event nor the thread model is an ideal 
fit. These experiences motivate us to develop both new 
APIs and architecture to further mitigate the program 
burden (c.f. Section-4.1).  

Second, the WiDS runtime schedules at event granular-
ity. This implies that events are handled in turn, and 
one’s execution can not be preempted by others. It is 
usually not a problem. However, consider an event that 
is sandwiched by two heartbeat events. If the middle 
event takes an exceptionally long time to complete (e.g., 
a blocking disk I/O) then the timer logic can be violated. 
In the case of BitVault, it is possible for the failure de-
tector to wrongly signal the crash of a node, allowing 
the repair mechanism to kick in, which can only make 
things worse. This particular issue can be resolved by 
offering a failure detection service inside the WiDS 
runtime so that one can register the interested endpoints 
and be notified when an endpoint fails to respond. By 
decoupling the dependency, the probe and response can 
run in parallel with the execution of events, fulfilled by 
the WiDS runtime. However, at its core, the issue is the 
handling of time-critical events and the provisioning of 
some level of real-time guarantee. Since objects typi-
cally implement a service (e.g., the membership proto-
col), and the WiDS objects communicate only through 
messages, one thing we plan to do is to allow events of 
more time-critical objects to preempt other events. The 
other possibility is to develop a Yield API so that the 
user can chop a long-running event.  



 

Third, related to the above two issues, many of the bugs 
did not manifest until the system was run in network 
execution mode, no matter how hard we tried to stress 
the code path in simulation mode. One reason is that 
event handling can take arbitrarily long in network exe-
cution mode, as opposed to one (simulated) clock tick 
in simulation. Thus the sequence of events can differ in 
unexpected ways, making it difficult to discover those 
bugs in the simulation environment. This experience 
propels us to develop WiDS-Replay (Section 4.2), 
which logs events and deterministically replays them in 
simulation mode. That is to say, we’d like to build a 
two-way street between WiDS-Dev and WiDS-Comm.  

3.2 Large-scale testing 

PNRP [5] is a P2P name resolution protocol with a tar-
get scale of tens of millions of nodes. Working with our 
product division partners, we ported PNRP to run on 
WiDS, and used WiDS-par to understand its macro-
behavior. We have successfully completed many simu-
lation runs of more than a million PNRP instances us-
ing hundreds of PCs. Some of the simulations took 
weeks to complete. This work has allowed us to gain 
insights into the system behavior, identify performance 
and network overhead, and remove design limitations 
that become apparent only under stress and at such a 
large scale. 

Running a large-scale program on a cluster of machines 
almost inevitably brings up the same set of (mundane) 
issues. These include deploying and version-controlling 
the code, monitoring the health of the runs, managing 
the cluster, dealing with stragglers, and gathering statis-
tics for final analysis. Moreover, heterogeneity in both 
software and hardware is much more than a perform-
ance (and hence configuration) issue. We ran into cases 
where some machines were equipped with mobile NICs 
or had stale network drivers and therefore could not 
handle bulk traffic. In both cases we ran micro-
benchmark with a binary search strategy to isolate them. 
Clearly this process needs to be automated. Finally, we 
also realized that the master-slave architecture of 
WiDS-par needs to be changed if we are to attempt 
scales beyond a few million protocol instances. 

Another approach we are considering is to swap states 
to disk and use intelligent prefetching policies to over-
lap the time of loading state from disk with simulation 
computation. By boosting per-machine simulation scale, 
we hope to reduce the number of total machines needed 
and thus the barrier overhead. 

4. Research in Progress 

4.1 WiDS-Mod 

A typical development process starts with some pseu-
do-code that bridges protocol logic with the real im-
plementation. Currently WiDS covers the development 
process starting from the implementation stage. The 
problem is that there is a large gap between the protocol 
logic and the final codes, resulting in coding as well as 
maintenance difficulties. This is especially problematic 
when there are many complicated and intertwined pro-
tocols involved in a system (as in BitVault).  

WiDS-Mod borrows the principle of Intentional Pro-
gramming [6] and adopts a hybrid approach. Taking 
advantage of temporal logic [7] and UML [8], our de-
scription language allows users to specify protocol 
logic in an abstract level and in the GUI (e.g. Figure 
3(a)). The protocol logic is then automatically turned 
into skeleton code (c.f. Figure 3(c)). The users then fill 
in the rest of implementation, such as  the code that 
examines the field of the AckBuf returned from the 
slaves to set the all_ready flag that decides whether 
to proceed to the commit phase of a two-phase commit 
protocol.  

CoordinatorSubordinate
Log(“Prepare”)

Prepare

Commit

Log(“Ready”)

Commit_Ack
Log(“Commit”)

Log(“Commit”)

<Barrier,-1>

Collect all acks

Prepare_Ack
Collect all acks

<Barrier,-1>

All Ready? N …

 

 
Figure 3. WiDS-Mod: (a) the model of the 2PC protocol; 
(b) codes using event-driven programming (coordinator 

side); (c) Sample code generated from the model. 

This approach shrinks the gap between the high-level 
protocol specification and implementation, which is 
itself broken down into the logic level and the detailed 
handler level. Our point is that, for distributed system, 
these two levels already have inherently different na-
tures and complexities (e.g., logical versus implementa-

c. Sample code 
generated from the 
model in a. 
 

LOG(“Prepare”); 
PAR_BEGIN(-1) 
  for_each(p, SubodinateSet) { 
    SendMsg(p, PREPARE, AckBuf[p]); 
  } 
PAR_END 
if (all_ready) { 
  LOG(“Commit”); 
  PAR_BEGIN(-1)     
    for_each(p, SubodinateSet) { 
      SendMsg(p, COMMIT, AckBuf[p]);
    } 
  PAR_END 
} 

 
Start: 
  Send PREPARE to all 

 
OnPrepareAck: 

   if all ack returned and  
all ready then 

Send COMMIT to all 
 

OnCommitAck: 
b. Three code blocks when 
writing 2PC protocol in a  
pure event-driven fashion. 

a. The model of 2PC protocol. 
 



 

tion correctness), so we might as well program them in 
different ways. 

As we discussed in Section 3.1, many distributed proto-
cols work in phases, each of which may involve multi-
ple remote entities. A number of BitVault protocols fall 
into this category. For these protocols, a purely event-
driven programming model quickly becomes awkward. 
Figure 3(a) shows the classic two-phase commit proto-
col, and the three separate code blocks (Figure 3(b)).  

Independent of the modeling effort, therefore, we need 
to extend both the WiDS APIs and the runtime. For 
instance, SendMsg() is a synchronous call which will 
block the caller until the destination has processed the 
message and sent back acknowledgement, and 
PAR_BEGIN/PAR_END closure offers a barrier seman-
tic, which will parallelize all synchronous messaging 
operations inside and  resume execution when all of 
them are finished. With user-level threading [9], we 
will be able to wrap the synchronous calls in the con-
tinuation events and offer thread-like semantics, and 
can additionally accommodate multi-party semantics, 
something that the pure thread model has difficulty to 
do. All these attempts are to further reduce program-
ming difficulties while leveraging the strengths of both 
the event and thread model.  

4.2 WiDS-Replay 

By exercising different network models, a good portion 
of protocol bugs can be rooted out. Unfortunately the 
remaining bugs, which will only surface in the network 
execution mode, are also the more difficult ones to find.  
In comparison, the cyclic debugging process [10] we 
are so used to in analyzing bugs in sequential applica-
tions, in which one sets a debugging point and repeats 
the execution, quickly becomes too much to afford.  
And yet writing out and then analyzing logs is also a 
grueling exercise. WiDS-Replay is a set of utilities 
aimed at analyzing bugs that occur only during the 
network execution by bridging with the simulation 
mode. 

The general methodology of WiDS-Replay is straight-
forward. When running in the network execution mode, 
checkpoints are executed at each machine for all impor-
tant states, and logs are also kept for any inputs be-
tween the checkpoints that may change the state of a 
running protocol instance (file I/O, wall-clock, random 
number generators, etc.). Finally, user-defined logs are 
coalesced and dumped into the same log file. We then 
start the protocol in the simulation mode, reloading the 
checkpoint and log traces to reconstruct context. Notice 
that in the network mode every instance is running as a 
separate process, whereas in the simulation mode each 
instance is a WiDS object. Therefore we carefully per-

form data marshalling and de-marshaling to make sure 
that the object states are loaded correctly. In the replay 
phase, we navigate the traces at the granularity of log 
entries while bringing up the code alongside as the 
navigation context. We then use deterministic forward 
and backward replay to examine the program state, 
doing this across different objects (and hence protocol 
instances running on different machines) when neces-
sary.  

The object-oriented programming model of WiDS 
makes it possible to replay a distributed protocol within 
a single address space and on a single machine. There-
fore, WiDS-Replay provides the capability of virtualiz-
ing the distributed system debugging process. A proto-
type of WiDS-Replay has already been built, but much 
more needs to be researched and developed before it 
can be put into practice.  

WiDS-Replay can also work within the simulation 
mode. Here, periodic checkpoint is sufficient for de-
terministic replay, assuming that the simulation envi-
ronment is also checkpointed. One may argue that since 
simulation is deterministic anyways, why bother with 
checkpointing. The truth is that for a complex protocol, 
it often takes a long time to reach a faulty point. Check-
pointing segments the debugging process and allows 
the user to invoke different debugging details when 
appropriate.  

5. Related Work 

As observed in [11], sharing the same code base for the 
purpose of development, simulation, and deployment is 
a popular notion. There have been some attempts along 
the same line. For instance, Neko [12] is a java plat-
form that allows the same algorithm to run both in 
simulation and in real network. Though we do share the 
same philosophy, their interfaces and architecture are 
quite different from ours. Neko does not offer parallel 
simulation capability, and it is not clear whether it has 
been used to build a complete system.   While WiDS 
offers native C/C++ support, MACEDON [13] takes a 
different approach by offering a domain-specific lan-
guage for FSM (finite state machine) based protocols. 
The MACEDON approach is geared towards quick 
prototyping overlay applications. Large-scale perform-
ance study requires an emulation approach (discussed 
below), though it should be possible to add PDES (Par-
allel Discrete Event Simulation [14]) support as well. 
One thing that MACEDON does very well is to abstract 
many common services of overlay systems into generic 
packages. WiDS can take the same approach for ser-
vices such as failure detector and membership protocols, 
which are common building blocks for distributed sys-
tem.  



 

One contribution of the current WiDS package is its 
capability of performing large-scale simulation and 
testing on clustered machines. While there have been 
many works on PDES, our Slow Message Relaxation 
optimization is unique in that it takes advantages of the 
time slacks that all distributed protocols use to cope 
with unreliable network transmission. A related ap-
proach to large scale testing is emulation, which is ex-
actly the same as the network execution mode of WiDS 
except that many (typically thousands of) instances of 
protocols run on each testing node, and the packets are 
routed through a cluster of machines modeling the 
Internet topology and (therefore) packet delays [15][16]. 
There are pros and cons in these two approaches, and it 
will be an interesting research topic to identify synergy. 

The versatility of WiDS extends to cover other impor-
tant aspects of the development process. WiDS-Mod 
borrows principles from Intentional Programming [6] 
to abstract high level logic (intention) from implemen-
tation. WiDS-Mod provides a natural and formal model, 
and yet reserves sufficient flexibility for developers to 
describe their implementation details. 

The idea of using checkpoint and logging at runtime to 
discover difficult bugs using deterministic replay is an 
old one [17]. WiDS-Replay checkpoints and logs dis-
tributed protocols as they are run in the real environ-
ment, but deterministically replays and debugs the pro-
tocols on a single machine within one address space.  
As far as we know, this is a novel approach. 

6. Conclusion 

WiDS was born in response to many early lessons we 
learned when researching and developing several P2P 
protocols. As an integrated toolkit that covers rapid 
prototyping, large-scale simulation, and deployment, it 
has already significantly improved our productivity. 
Still, to become truly holistic, WiDS must evolve fur-
ther to address the difficulties of programming as well 
as debugging distributed systems.  
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