
Make Least Privilege a Right (Not a Privilege)

Maxwell Krohn∗, Petros Efstathopoulos†, Cliff Frey∗, Frans Kaashoek∗, Eddie Kohler†,
David Mazières‡, Robert Morris∗, Michelle Osborne‡, Steve VanDeBogart† and David Ziegler∗

∗MIT †UCLA ‡NYU
asbestos@scs.cs.nyu.edu

ABSTRACT

Though system security would benefit if programmers
routinely followed the principle of least privilege [24],
the interfaces exposed by operating systems often stand
in the way. We investigate why modern OSes thwart se-
cure programming practices and propose solutions.

1 INTRODUCTION

Though many software developers simultaneously revere
and ignore the principles of their craft, they reserve spe-
cial sanctimony for the principle of least privilege, or
POLP [24]. All programmers agree in theory: an ap-
plication should have the minimal privilege needed to
perform its task. At the very least, developers must fol-
low five POLP requirements: (1) split applications into
smaller protection domains, or “compartments”; (2) as-
sign exactly the right privileges to each compartment; (3)
engineer communication channels between the compart-
ments; (4) ensure that, save for intended communication,
the compartments remain isolated from one another; and
(5) make it easy for themselves, and others, to perform a
security audit.

Unfortunately, modern operating systems render the
application of these requirements onerous, dangerous, or
impossible. In our experience (detailed in Section 2.2),
building least-privileged software is cumbersome and
labor-intensive: following POLP feels more like an abuse
of the operating system’s interface than a judicious use of
its features. Most programmers spare themselves these
difficulties by reverting to monolithic, over-privileged
application designs. Unsurprisingly, this exposes ma-
chines to attacks both old (remote attacks on privileged
servers) and new (“install attacks”, which take advan-
tage of users’ willingness to run high-privilege installers
to infect machines with adware, spyware, or malware).
We cannot write bug-free applications or prevent hon-
est users from occasionally executing malicious code. In-
stead, our best hope is to contain the damage of evil code
by resurrecting POLP.

In this paper, we examine some ways that current
OSes discourage development of least-privilege appli-
cations (Section 2), then propose OS design ideas that
might encourage it instead. A first approximation of a
POLP-friendly system is one based on capabilities, dis-
cussed in Section 3. Though capabilities have historically
flummoxed application designers, we present a more us-
able interface, based on the familiar Unix file system. In
Section 4, we discuss shortcomings in this proposed de-
sign: weaknesses in the separated system might still al-

low vulnerabilities to spread, and process-sized compart-
ments are too coarse-grained. We then propose a solution
based on decentralized mandatory access control [17].
The end result is a new operating system called Asbestos.

2 LESSONS FROM CURRENT SYSTEMS

Modern Unix-like operating systems provide a limited
API for running programs according to POLP. We ex-
amine how far administrators and programmers can push
these features if POLP is their goal.

2.1 chrooting or jailing Greedy Applications

Because Unix grants privilege with coarse granularity,
many Unix applications acquire more privileges than
they require. These “greedy applications” can be tamed
with the chroot or jail system calls. Both calls con-
fine applications to jails, areas of the file system that
administrators can configure to exclude setuid executa-
bles and sensitive files. FreeBSD’s jail goes further,
restricting a process’s use of the network and interpro-
cess communication (IPC). System administrators with
enough patience and expertise can chroot or jail
standard servers such as Apache [1], BIND [3] and send-
mail [26], though the process resembles stuffing an ele-
phant into a taxicab.

Even when possible, the chroot and jail ap-
proaches face more fundamental drawbacks:

Jails are heavyweight. The jailed file system must
contain copies of system-wide configuration files (such
as resolv.conf), shared libraries, the run-time linker,
helper executable files, and so on. Maintaining collec-
tions of duplicated files is an administrative difficulty,
especially on systems with many jailed applications.

Jails are coarse-grained. Running a process in a
jail is similar to running it on its own virtual machine.
Two jailed applications can share files only if one’s
namespace is a superset of the other, or if inefficient
workarounds are used, such as NFS-mounting a local file
system.

Jails require privilege. Unprivileged users may not
call chroot or jail.1 Jails are therefore ill-suited for
containing the many untrusted applications that should
not have privileges, such as executable email attachments
or browser plugins.

Finally, chroot or jail’s ex post facto imposition
of security is no substitute for POLP-based design. For
example, a typical dynamic content Web server (such as
Apache with PHP [18]) runs many logically unrelated
scripts within the same address space. A vulnerability in

1



Figure 1: Block diagram of the OKWS system. Standard processes are
shaded, while site-specific services and databases are shown in white.
The privileged launcher process launches the demux, publisher, log-
ger and the site-specific services. The databases shown might either be
running locally, or on different machines.

any one script exposes all other scripts to attack, regard-
less of whether the server is jailed.

2.2 Ad-Hoc Privilege Separation

True privilege separation is possible on Unix through a
collection of ad-hoc techniques. For instance, our POLP-
based OK Web Server (OKWS) [12] uses a pool of
worker processes to sequester each logical function (i.e.
/show-inbox, /change-pw, and /search) of the
site into its own address space. The demux, a small, un-
privileged process, accepts incoming HTTP requests, an-
alyzes their first lines, and forwards them to the appropri-
ate workers using file descriptor passing. Workers then
respond to clients directly. A privileged launcher pro-
cess starts the suite of processes, ensuring that all are
jailed into empty subtrees of the file system, and that they
do not have the privileges to interact with one another.
Finally, since workers’ chroot environments prohibit
them from accessing the root file system directly, they
write HTTP log entries and read static HTML content
via small, unprivileged helper processes: the logger and
the publisher, respectively. Figure 1 shows a block dia-
gram of a simple OKWS configuration.

The goal of this design is to separate application logic
into disjoint compartments, so that any local vulnera-
bility (especially in site-specific work processes) can-
not spread. In particular, workers cannot send each other
signals or trace each other’s system calls, they cannot
access each other’s databases, no worker can alter any
executable or library, and workers cannot access each
other’s coredumps. Unfortunately, achieving these natu-
ral requirements complicates OKWS. Its launcher must:

1. Establish a chroot environment, with the correct
file system permissions, that contains the appro-

priate shared libraries, configuration files, run-time
linker, and worker executables.

2. Obtain unused UID and GID ranges on the system.

3. Assign the ith worker its own UID ui and GID gi.

4. Allocate a writable coredump directory for each
UID.

5. Change the ith worker’s executable to have owner
root, group gi, and access mode 0410.

6. Call chroot.

7. For each worker process i: kill all processes running
as user ui or group ID gi; fork; change user ID to ui

and group ID to gi; chdir into the dedicated dump
directory; and call exec on the correct executable.

The chown call in Step 5, the chroot call in Step 6,
and the setuid call in Step 7 all require privileged sys-
tem access, so the launcher must run as root. Unix offers
no guarantees of an atomic UID reservation (as required
in Step 2) or race-free file system permission manipula-
tions (as required throughout). Even ignoring these po-
tential security problems, this design requires involved
IPC to coordinate worker and helper processes.

Other systems use similar techniques to solve related
problems. Examples include remote execution utilities
such as OpenSSH [23] and REX [10], and mail transfer
agents such as qmail [2] and postfix [21]. Considering
these applications and others, a trend emerges: in each
instance, the intricate mechanics of privilege separation
are invented anew. To audit the exact security procedures
of these applications, one must comb tens of thousands
of lines of code, each time learning a new system. Even
automated tools that separate privileged operations [5]
require root access.

2.3 A User-Level POLP Library?

At first glance, a user-level POLP library might seem
able to abstract the security-related specifics of appli-
cations like OKWS, qmail, and so on. One such ex-
ample of this approach is found in the Polaris system
for Windows XP [30], which applies POLP to virus-
prone client applications like Web browsers and spread-
sheets2 via chroot-like containers. Such solutions have
three drawbacks. First, they require privileged access
to the system. Second, libraries must work around the
lack of good OS support for sharing across containers:
since jailed processes work with copies of files, synchro-
nization schemes are required to reconcile copies after
changes. (For example, Polaris email plug-ins run in a
jail with a copy of the attachment; a persistent “synchro-
nizer” process updates the original if the plug-in changes
the copy.) Finally, we suspect that POLP techniques used
in more complicated servers such as OKWS do not gen-
eralize well. As evidence, both OKWS and REX, an
ssh-like login facility, use the same libraries (the SFS
toolkit [16]) but share little security-related code. This
comes as no surprise since the two have very different se-

2



curity aims: OKWS hides most of the file system, while
REX exposes it to authorized users; OKWS must support
millions of possible users, while REX serves only those
with login access to a given machine; application design-
ers can extend OKWS with site-specific code, while REX
runs unmodified. Fitting both POLP usages into one gen-
eral template seems a tall order.

2.4 Unix as a Capability System

One of the main difficulties with ad-hoc privilege sepa-
ration is that starting with a privileged process and sub-
tracting privileges is more cumbersome and error-prone
than starting with a totally unprivileged process and
adding privileges. Unix-like operating systems in general
favor the subtractive model, while capability-based oper-
ating systems [4, 28] favor the additive one. But Unix file
descriptors are in fact capabilities. By hobbling system
calls sufficiently—either through system call interposi-
tion [7, 22] or small kernel modifications—we can em-
ulate those semantics of capability-based operating sys-
tems that enable privilege separation.

The idea is to allow calls that use already-opened file
descriptors (such as read, write, and mmap), but shut
off all “sensitive” system calls, including those that cre-
ate new capabilities (such as open), assign capabilities
control of named resources (such as bind), and per-
form file system modifications, permissions changes, or
IPC without capabilities (such as chown, setuid, or
ptrace). In OKWS, the launcher could apply such a
policy to the worker processes, which only require ac-
cess to inherited or passed file descriptors. The launcher
could run without privilege, and would no longer nav-
igate the system call sequence seen in Section 2.2. By
disabling all unneeded privileges, the operating system
could enforce privilege separation by default.

This works because Unix’s capability-like system
calls are virtualizable. Processes are usually indifferent
to whether a file descriptor is a regular file, a pipe to an-
other process, or a TCP socket, since the same read and
write calls work in all three cases. In practical terms,
virtualization simplifies POLP-based application design.
Splitting a system into multiple processes often involves
substituting user-space helper applications for kernel ser-
vices; for instance, OKWS services write log entries to
the logger instead of a Unix file. With virtualizable sys-
tem calls, user processes can mimic the kernel’s inter-
face; programmers need not rewrite applications when
they choose to reassign the kernel’s role to a process.

More important, virtualizable system calls enable in-
terposition. If an untrustworthy process asks for a sen-
sitive capability, a skeptical operator can babysit it by
handing it a pipe to an interposer instead. The interposer
allows harmless queries and rejects those that involve
sensitive information. If the kernel API is virtualizable,
then the operator need not even recompile the untrust-
worthy process to interpose on it.

Unfortunately, most Unix system calls resist virtual-

ization. Some do not involve any capability-like objects;
others use hard-wired capabilities hidden in the kernel,
such as “current working directory” and “file system
root”. User-level emulation of these problematic calls—
which include open—is messy, if not impossible; but
scrapping open in the name of POLP seems unlikely to
compel the average programmer.

3 OPERATING SYSTEM SUPPORT FOR POLP

With the lessons from Unix, we can now imagine a
POLP-friendly operating system interface, one in which
all system calls are capability-based and virtualizable
like read and write. Adding universal virtualization
support to a Unix-like capability system would cover all
five POLP requirements. With capabilities, application
programmers can split their program into isolated com-
partments (#1 and #4), granting each compartment ex-
actly the privileges necessary to complete its task (#2).
With virtualization, programmers use standard interfaces
and libraries for communication between these compart-
ments (#3), and auditors can understand this communica-
tion by interposing at the interfaces (#5). A new take on
capabilities—one whose Unix-like appearance would be
friendlier to application programmers—could simplify
the application of POLP. This section presents a hypo-
thetical design for such a system, which we’ll call Asnix.

3.1 Asnix Design

In Asnix, interactions between a process and other parts
of the system take the form of messages sent to devices.
Devices include processes and system services as well
as hardware drivers. Messages follow the outline “per-
form operation O on capability C, and send any reply
to capability R.” The kernel forwards this message to
the device that originally issued C. There are a small
number of operation types, as in NFS [25] and Plan 9’s
9P [19]: LOOKUP, READ, WRITE, and so forth. The mes-
sage types and their associated syntax are conventions;
the kernel only enforces or interprets those messages sent
to kernel devices. Requests and replies are sent and re-
ceived asynchronously.

This design aids virtualization. All of a process’s in-
teractions with the system—whether with the kernel or
other user applications—take the same form, explicitly
involve capabilities, and shun implicit state. Consider, for
example, the Unix call open("foo"). This call in As-
nix would translate to a message that a process P sends
to the file server device FS:

P → 〈CCWD, LOOKUP, "foo", CP〉 → FS.
The first argument is a capability CCWD that identifies P’s
current working directory. The second is the command
to perform, the third represents the arguments, and the
fourth is the capability to which the file system should
send its response. Since Asnix makes explicit the CWD
state hidden in the Unix system call, either the file server
or a user process masquerading as the file server can an-
swer the message.

3



3.2 Naming and Managing Capabilities

When an Asnix process P1 launches a child process P2,
it typically grants P2 a number of capabilities, rang-
ing from directories on the file system to opened net-
work connections. How can P2 then access these capa-
bilities? Traditional capability systems such as EROS fa-
vor global, persistent naming, but persistence has proven
cumbersome to kernel and application designers [27].

Instead, we advocate a per-process, Unix-style
namespace. Under Asnix, P1 makes capabilities avail-
able to P2 as files in P2’s namespace. Suppose P1’s
namespace contains a tree of files and directories under
/secret, and P1 wishes to grant P2 access to files un-
der /secret/bob. As in Plan 9 [20], P1 can mount
/secret/bob as the directory /home in P2’s names-
pace. Unlike in Plan 9, the state implicit in the per-
process namespace is handled at user level, and the ker-
nel only traffics in messages sent to capabilities. For ex-
ample, when the process P2 opens a file under /home,
the user level libraries translate the directory /home to
some capability C. The kernel sees a LOOKUP message
on C.

3.3 OKWS Under Asnix

We now consider what OKWS might look like on As-
nix. Similar to before, the application suite consists of
a launcher, demux and worker processes. Under Asnix,
the logger process simply enforces append-only access
to a log file, and might be useful for many applications
(much like syslogd on today’s systems). No publisher
process is needed.

The launcher starts each worker process with an
empty namespace (and thus no capabilities), then aug-
ments their namespaces as follows:

• In the logger’s namespace, mounts a logfile on
/okws/log.

• In the demux’s namespace, mounts TCP port 80
on /okws/listen. For each worker process i,
makes a socket pair and connects one end to
/okws/worker/i.

• In worker process i’s namespace, mounts the other
end of the above socket pair to /okws/listen.
Mounts a connection to the logger on /okws/log.
Mounts a read-only capability to the root HTML di-
rectory on /www.

• In all namespaces, makes required shared libraries
available under /lib.

The launcher then launches all processes as before.
Under Unix, the launcher had to carefully construct

jails, physically copying over files and invoking custom
helper applications like the publisher and logger to limit
file system access. Asnix, by contrast, lets the launcher
expose capabilities to child processes at arbitrary points
in their namespaces. Each child receives a synthetic file
system perfectly suited to its task.

Moreover, all capabilities available to the Asnix
OKWS processes are virtualizable. Workers accept con-
nections on /okws/listen regardless of whether they
originate from the kernel’s TCP stack or the demux. Sim-
ilarly, logging might be to a raw file or through a logging
process that enforces append-only behavior; worker pro-
cesses are oblivious to the difference.

3.4 Discussion

So far, the proposed system features no individually
novel ideas; rather, it finds a new point in the OS de-
sign space amenable to secure application construction.
Similar effects might be possible with message-passing
microkernels, or unwieldy system call interposition mod-
ules. But in Asnix, the security primitives are few and
simple, for both the kernel and application developer. Al-
though the interface exposed to applications feels like
the familiar Unix namespace (with added flexibility for
unprivileged, fine-grained jails), an application’s system
interactions are entirely defined by its capabilities, and
Asnix behaves like a capability system for the purposes
of security analysis.

4 FINE-GRAINED POLP WITH MAC

Though we believe Asnix is an improvement over the
status quo, it still falls short of enabling the high-level,
end-to-end security policies we seek. Applications in As-
nix can only express security policies in terms of pro-
cesses, but processes often access many different types
of data on behalf of different users. A security policy
based on processes alone can therefore conflate data
flows that ought to be handled separately. For exam-
ple, OKWS on Asenix achieves the policy that data
from a /change-pw process cannot flow to a corrupted
/show-inbox process; but the policy says nothing
about whether user U’s data within /show-inbox can
flow to user V , meaning an attacker who compromises
/show-inbox might be able to read an arbitrary user’s
private e-mail.

Of course, a much better policy for OKWS would be
that “only user U can access user U’s private data”. We
would like to separate users from one another, much as
we separated services in Section 3. Though a user ses-
sion involves many different processes (such as the de-
mux, databases3, and worker processes), a policy for sep-
arating users should be achievable with a small, simple,
isolated block of trusted code, as opposed to hidden au-
thorization checks scattered throughout the system. This
section extends Asnix to a new system, Asbestos, whose
kernel uses flexible mandatory access control primitives
to enforce richer end-to-end security policies. We are
currently designing and building Asbestos as a full op-
erating system for x86 machines.

4.1 Complete Isolation

One possible approach to better isolation, which we call
complete isolation, would be to prohibit server-side pro-

4



cesses from speaking for multiple users. The server must
be prepared to run a process for every service–user pair;
trusted code in demux would route traffic accordingly.
Similarly, a database process exists for each user, writing
to a user-specific database file. Capabilities can guaran-
tee separation between processes as usual. More drastic
separation is possible with virtual machines [11, 32] so
that each machine can only speak for one user.

Complete isolation hides a user’s data from other
users, but at significant cost. First, such systems are not
scalable, requiring either an expensive fork-accept-close
model or a huge pool of largely-idle per-user servers.
Second, these systems do not accommodate convenient
data sharing, even with trusted processes. While tradi-
tional systems could use simple SQL statements to ag-
gregate statistics over rows of a site’s databases, com-
pletely isolated systems would have to search millions
of separate files, perhaps over NFS in the case of sepa-
rated virtual machines. Separation in this case requires a
tremendous sacrifice in flexibility for data management.
Data will not flow where it shouldn’t, because it cannot
flow at all.

4.2 Decentralized, Fine-Grained MAC

Asbestos uses decentralized, fine-grained mandatory ac-
cess control (MAC) primitives to solve this problem in
a flexible and scalable manner. Subjects on the system,
such as processes, I/O channels, and files, are assigned
labels, and special privilege is needed to remove a label
once applied. Furthermore, a subject transmits its labels
to any other objects that it successfully communicates
with. With labels, Asbestos tracks all subjects that have
accessed a given object, whether directly or via proxy.

We propose two important modifications to tradi-
tional MAC-based operating systems. First, decentral-
ization [17]: processes can create their own labeling
schemes on the fly, so that a Web server can associate
each remote user with her own label. Second, labels ap-
ply at the fine-grained level of individual memory pages,
so that a single process can act on behalf of mutually dis-
trustful users without fear of leaking data among them.
Taken together, these two modifications allow applica-
tion designers to dynamically partition server processes
into isolated sub-processes, where a sub-process consists
of a set of virtual pages that share the same label.

When a server process receives a message, it is au-
tomatically assigned to a sub-process based on the label
of the message’s source. Processing a message from user
U “contaminates” the process with U’s labels. As in tra-
ditional MAC, contamination with the label U prevents
a process from accessing resources forbidden from user
U, such as user V’s network connection. Thus, the kernel
must allow a process speaking on behalf of multiple users
to purge its labels without leaking data. Asbestos lets a
process flush its register state, remap its memory, and
clear its labels, allowing it to serve a request on behalf of
a different user V . However, the system still accommo-

dates trusted declassifiers, such as statistics collectors,
that can act on behalf of multiple users and traverse sub-
process boundaries within a virtual address space.

With decentralized, fine-grained MAC, OKWS can
achieve a strong end-to-end security policy. The only
trusted code is a labeler module upstream of demux,
which works as follows. When user U connects to the
Web server, the labeler peeks at the incoming TCP con-
nection T and authorizes it based on session state or login
information. If authorization succeeds, the labeler labels
T with U’s label. Now, any process that reads from T
and writes to memory will automatically tag that mem-
ory page with U’s label, and will therefore push that page
into U’s sub-process. The kernel allows an unprivileged
process to accumulate labels for different users (such as
for U and V), but it forbids that process from writing to a
network channel not labeled with both. Thus, if U com-
promises a server process and convinces it to read from
V’s memory, the server process will acquire labels for
both U and V , and therefore cannot write out to T .

4.3 Discussion

This decentralized MAC design, combined with the ca-
pability architecture from Section 3, makes POLP con-
venient and practical for an OKWS-like Web server.
We have no proof that other applications would simi-
larly benefit from Asbestos, but we are optimistic. As-
bestos provides simple, flexible, and fine-grained mech-
anisms for achieving the five important POLP require-
ments without sacrificing performance.

5 RELATED WORK

Asbestos proposes the marriage of previous ideas in
systems: the capability-based operating system [4, 13,
28, 33], the per-process name space [20], the virtualiz-
able kernel interface (the logical extension of system-
call interposition libraries [7, 22]), and decentralized
MAC [17].

Naturally, other operating systems predating As-
bestos meet related design goals or offer similar features.
Message-based operating systems such as L4, Amoeba,
V, Chorus and Spring can isolate system services by run-
ning them as independent, user-level processes and pro-
vide natural support for interposition through message-
based interfaces [14]; Trusted Mach in particular views
message-passing from a security perspective [6]. But
ports in microkernel systems are coarse as capabilities
go; for instance, a process can have a capability for the
file server but not for a particular directory. For POLP,
application programmers need arbitrary collections of
specific capabilities; in this respect, the microkernels of
yesteryear do not fit the bill.

The Flask System applies MAC to the Fluke Micro-
kernel [29]. Many of Flask’s core design principles have
found a modern incarnation in SELinux [15], which,
like TrustedBSD [31], adds mandatory access control to
popular Unix systems. In both, static policy files dic-

5



tate which resources applications might access, and how
processes can interact with one another. Such systems
are attractive because they preserve the POSIX interface
to which many programmers are accustomed. However,
their policy extension model, which is based on privi-
leged files and kernel modules, appears to fall short of
the decentralized and uniformly-analyzable policies im-
plemented by Asbestos labels.

Type safety is another way to enforce operating
system security. Coyotos combines capabilities with
language-level verification techniques [27]. Singularity
combines strong isolation with a type-safe ABI [8]. At
user level, the Java Sandbox uses customizable policies
to specify an applet’s access rights; dynamic sandboxing
shows these policies can be automatically produced [9].

ACKNOWLEDGMENTS

The authors thank Lee Badger, Butler Lampson, Mike
Walfish and the reviewers. This work was supported by
DARPA grants MDA972-03-P-0015 and FA8750-04-1-
0090, and by joint NSF Cybertrust/DARPA grant CNS-
0430425. David Mazières and Robert Morris are sup-
ported by Sloan fellowships.

REFERENCES

[1] The Apache Software Foundation. Apache.
http://www.apache.org.

[2] D. J. Bernstein. qmail. http://cr.yp.to/qmail.html.
[3] Internet Systems Consortium. Berkeley Internet Name Daemon.

http://www.isc.org/sw/bind.
[4] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R.

Landau, and J. S. Shapiro. The KeyKOS nanokernel
architecture. In USENIX Workshop on Microkernels and Other
Kernel Architectures. USENIX, 1992.

[5] D. Brumley and D. X. Song. Privtrans: Automatically
partitioning programs for privilege separation. In USENIX
Security Symposium, pages 57–72. USENIX, 2004.

[6] T. Fine and S. E. Minear. Assuring distributed trusted mach. In
Proceedings of the 1993 IEEE Symposium on Security and
Privacy, page 206, Washington, DC, USA, 1993. IEEE
Computer Society.

[7] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure
environment for untrusted helper applications. In Proceedings of
the 6th Usenix Security Symposium, San Jose, CA, USA, 1996.

[8] G. C. Hunt and J. R. Larus. Singulairty design motivation.
Technical Report MSR-TR-2004-105, Microsoft Corporation,
Dec. 2004.

[9] H. Inoue and S. Forrest. Anomaly intrusion detection in
dynamic execution environments. In NSPW ’02: Proceedings of
the 2002 workshop on New security paradigms, pages 52–60.
ACM Press, 2002.

[10] M. Kaminsky, E. Peterson, D. B. Giffin, K. Fu, D. Mazìeres, and
M. F. Kaashoek. REX: Secure, extensible remote execution. In
Proceedings of the 2004 USENIX, pages 199–212, Boston, MA,
June–July 2004. USENIX.

[11] P. Karger, M. Zurko, D. Bonin, A. Mason, and C. Kahn. A
retrospective on the VAX VMM security kernel. Transactions
on Software Engineering, 17(11):1147–1165, 1991.

[12] M. Krohn. Building secure high-performance web services with
OKWS. In Proceedings of the 2004 USENIX, Boston, MA,
June–July 2004. USENIX.

[13] H. Levy. Capability-based Computer Systems. Digital Press,
1984.

[14] J. Liedtke. Toward real microkernels. Communications of the
ACM, 39(9):70–77, 1996.

[15] P. Loscocco and S. Smalley. Meeting critical security objectives
with security-enhanced linux. In Proceedings of Ottawa Linux
Symposium 2001, June 2001.

[16] D. Mazières. A toolkit for user-level file systems. In
Proceedings of the 2001 USENIX, pages 261–274. USENIX,
June 2001.

[17] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, pages 129–142,
Saint-Malo, France, October 1997. ACM.

[18] PHP: Hypertext processor. http://www.php.net.
[19] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,

H. Trickey, and P. Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221–254, Summer 1995.

[20] R. Pike, D. Presotto, K. Thompson, H. Trickey, and
P. Winterbottom. The use of name spaces in Plan 9. In
Proceedings of the 5th ACM SIGOPS Workshop, Mont
Saint-Michel, 1992.

[21] Postfix. http://www.postfix.org.
[22] N. Provos. Improving host security with system call policies. In

Proceedings of the 12th USENIX Security Symposium, pages
257–271, Washington, DC, August 2003.

[23] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. In 12th USENIX Security Symposium, Washington,
D.C., August 2003.

[24] J. H. Saltzer and M. D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sept. 1975.

[25] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun network filesystem. In
Proceedings of the Summer 1985 USENIX, pages 119–130,
Portland, OR, 1985. USENIX.

[26] The Sendmail Consortium. Sendmail.
http://www.sendmail.org.

[27] J. S. Shapiro, M. S. Doerrie, E. Northup, S. Sridhar, and
M. Miller. Towards a verified, general-purpose operating system
kernel. In G. Klein, editor, Proc. NICTA Formal Methods
Workshop on Operating Systems Verification, Sydney, Australia,
2004. NICTA Technical Report 0401005T-1, National ICT
Australia.

[28] J. S. Shapiro, J. Smith, and D. J. Farber. EROS: a fast capability
system. In Proc. Symposium on Operating Systems Principles,
pages 170–185, 1999.

[29] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lepreau. The flask security architecture: System support
for diverse security policies. In In Proceedings of the Eighth
USENIX Security Symposium, August 1999.

[30] M. Stiegler, A. H. Karp, K.-P. Yee, and M. Miller. Polaris: Virus
safe computing for windows XP. Technical Report
HPL-2004-221, December 2004.

[31] R. N. M. Watson. TrustedBSD: Adding trusted operating system
features to FreeBSD. In Proceedings of the FREENIX Track:
2001 USENIX Annual Technical Conference, pages 15–28.
USENIX Association, 2001.

[32] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
performance in the Denali isolation kernel. In Proceedings of
the 2002 Symposium on Operating Systems Design and
Implementation (OSDI), Dec. 2002.

[33] M. V. Wilkes and R. M. Needham. The Cambidge CAP
Computer and its Operating System. North Holland, 1979.

NOTES
1Were it not for this prohibition, unprivileged users could use con-

trol of the chrooted top-level directory to elevate privileges. The at-
tack is to make a new directory /tmp/foo, hard link from /tmp/
foo/su to the system su, write a new password file /tmp/foo/
etc/passwd, call chroot on /tmp/foo, and then call su from
within the jail.

2Polaris appears not as well-suited for larger servers.
3We assume for simplicity that databases run locally, though all

concepts discussed can generalize to distributed deployments.

6


