
Broad New OS Research: Challenges and Opportunities

Galen C. Hunt1, James R. Larus1, David Tarditi1, and Ted Wobber2
1Microsoft Research Redmond, Redmond, WA 98052, USA

2Microsoft Research Silicon Valley, Mountain View, CA 94043, USA
http://research.microsoft.com/os/singularity

Abstract
Contemporary software systems are beset by prob-

lems that create challenges and opportunities for broad
new OS research. To illustrate, we describe five areas
where broad OS research could significantly improve
the current user experience. These areas are depend-
ability, security, system configuration, system exten-
sion, and multi-processor programming. In each area
we explore how contemporary systems fall short.
Where we have thought of possible solutions, we offer
directions for future research.

Finally, we describe Singularity, a research project at
Microsoft Research that is building a new operating
system to explore four of these challenges. Singularity
incorporates three specific design decisions in order to
increase system dependability and improve system se-
curity, configuration, and extension. These design de-
cisions include the adoption of an abstract instruction
set as part of the system binary interface, a unified ex-
tension architecture for both the OS and applications,
and a first-class application abstraction.

1. Introduction
The products of forty years of OS research are sitting

in everyone’s desktop computer, cell phone, car, etc.—
and it is not a pretty picture. Modern software systems
are—broadly speaking—complex, insecure, unpredict-
able, prone to failure, hard to use, and difficult to main-
tain. Part of the difficult is that good software is hard to
write, but in the past decade, this problem and more
specific shortcomings in systems have been greatly ex-
acerbated by increased networking and embedded sys-
tems, which placed new demands that existing architec-
tures struggled to meet. These problems will not have
simple solutions, but the changes must be pervasive,
starting at the bottom of the software stack, in the oper-
ating system.

Unfortunately, as the emergence of the Internet exac-
erbated problems in conventional systems, the research
community turned its attention from broad OS research
to focus on incremental improvements or new areas
such as distributed systems [17].

Without OS solutions, others stepped into the void by
devising partial, application-level solutions to these
problems. Consider, for example, the problem of isolat-
ing code for potentially untrusted sources. Applications

and programming language runtimes have tried to sup-
plant inadequate OS security with partially redundant
and complex security abstractions using stack walking
and code signing [12][24]. Others have attempted to
solve this problem by go so far as to replicate entire
operating systems in virtual machine monitors [11].
While the engineering is admirable, one wonders if the
OS could provide a more integrated solution.

The remainder of this paper has three parts. Section 2
suggests example areas in which OS research could
make operating systems work significantly better for
most users. We offer these areas as evidence of oppor-
tunity, not as an exhaustive research agenda. Section 3
describes work in the Singularity project to address
some of these areas. Finally, Section 4 summarizes the
challenges and opportunities for broad new OS research
and draw conclusions.

2. Opportunities for OS Research
To suggest the many opportunities for OS research,

we list five areas in need of new ideas and abstractions:
dependability, security, system configuration, system
extension, and multiple processor programming. This
list is intended to be illustrative, not exhaustive.

2.1 Dependability
A system is dependable if it behaves predictably and

reliably; in other words, if its behavior consistently con-
forms to an understandable and useful model. A sys-
tem’s perceived dependability is a function of both user
expectation and actual system behavior.

Unfortunately, the perceived dependability of con-
temporary software systems is low, particularly in the
eyes of non-technical users [15].i Partially this results
from raw software failures. However, it also results
from unpredictable system behavior.

Broadly speaking, the owner of a modern PC encoun-
ters frequent unexpected behaviors. By contrast, most
modern cars are considered quite dependable by their
users; this despite the fact that cars can require as much
as one hour of maintenance for every one hundred hours
of usage.ii We claim that modern cars are considered
dependable because they have an easily understood
operation model consisting of regular fueling, regular
oil changes, regular maintenance, and basically predict-
able, uninterrupted usage the rest of the time.

No open, general purpose software system can make a
similar claim. They all must be patched frequently and
regularly to fix flaws that open the system to malicious
attack. They all can fail in ways that are inexplicable
and unpredictable to ordinary users. Many of these us-
ers are afraid to change their system in even the slight-
est way, for fear of breaking them.

2.2 Security
Contemporary OS security systems were designed to

protect users of a system against each other and to pro-
tect the OS from errant programs. These security archi-
tectures were developed in the quaint past when code
came from trusted sources and networks connected us
with our friends and colleagues. In today’s connected
world, users and computers are surrounded by unscru-
pulous advertisers, petty criminals, and increasingly
organized crime. In this world in which executable
code can and does come from anywhere, the OS needs
to protect user and system resources from potentially
hostile code that a user runs either intentionally or unin-
tentionally. This is a very hard problem given that de-
sired code may do useful work!

To bring code into an OS security model, there must
be a basic OS abstraction that represents the identity of
code. The abstraction should also capture the prove-
nance of the code as well as provide a means for check-
ing code integrity. Once code is identifiable, we can
imagine enforcing security policy pertaining to it.

Code identity alone, however, is not sufficient. Soft-
ware components interact in exceedingly complex ways,
and many such interactions are security-relevant. We
can expect the next generation of attacks to exploit un-
planned and unprotected interactions between software
components. There is fertile ground for research in un-
derstanding how to prevent such attacks by design.

The Java [12] and Common Language Infrastructure
(CLI)iii [24] programming environments have explored
some of these issues. However, the security models in
these systems are complex and largely separate from OS
models.

2.3 System Configuration
Contemporary operating systems contain abstractions

for many components of modern applications, such as
processes, threads, and shared libraries, but applications
and their dependencies are only informally character-
ized. Lacking a strong concept of an application’s
complete configuration, the OS has no mechanisms to
guarantee the integrity or provenance of an application.
A system is only as stable as its most fragile component,
which cannot be identified in current systems; systems
which provide no easy way to distinguish application
components intermixed in file systems and configura-
tion registries.

Consider, for example, the case of applications collid-
ing in their usage of shared spaces such as file systems
or configuration registries. The installation of one ap-
plication may corrupt or irreversibly alter the configura-
tion of another via changes to a file or registry. The
“DLL Hell” problem in Windows systems occurs when
one application overwrites a common shared library
with a version incompatible with an existing applica-
tion. Similar problems can occur when an application
overwrites configuration information mapping from
document extensions to applications. To compensate
for the absence of OS managed applications, users re-
sort to ad-hoc application isolation techniques, such as
jails [14] or virtual machine monitors, such as VMware
[9] and Xen [3].

2.4 System Extension
Since no monolithic system can satisfy all users, most

complex software lets users load code to extend func-
tionality. Dynamically loaded extensions are found as
widely as device drivers in kernels and spelling check-
ers in word processors. Whether in the OS or an appli-
cation, most extensions are loaded directly into a host
address space with no hard interface, protection bound-
ary, or clear distinction between host and extension
code. Extension through in-process code loading ap-
pears flexible and attractive, but due to a lack of isola-
tion, extensions are a major source of software reliabil-
ity and security problems. For example, faulty device
drivers cause a large fraction of Windows and Linux
failures [22].

A number of OS research efforts, including Exokernel
[13], SPIN [5], VINO [21], and Nooks [22] have sought
safer OS extension without addressing the more general
problem of application extension. Pragmatically, each
of these systems provided domain-specific models for
OS extensions. Software fault isolation (SFI) [23], one
of the few research efforts to consider application ex-
tension, limits an extension to a subset of an applica-
tion's address space. However, the overhead for SFI is
quite high and still exposes published data structures to
corruption by the extension.

In Section 3.1.2, we will describe research in the Sin-
gularity system to create a unified extension architecture
for both the operation system and applications.

2.5 Multi-processor Programming
Thanks to the physical constraints of semiconductor

device scaling, it has become easier to replicate proces-
sors than to increase processor speed. Over the next
decade the number of processing cores per chip could
double every 18-24 months. Processing cores are repli-
cating not only on CPUs, but in peripheral devices as
well. Notwithstanding recent work on scheduling algo-
rithms for multi-core CPUs [10] and programming

GPUs [6], there are research opportunities to create new
abstractions for programming large numbers of proces-
sors and to treat the non-CPU processors found in
graphics, network, and storage devices as first-class
compute resources.

3. Singularity
Singularity is a Microsoft Research project to develop

techniques and tools for building dependable systems
that address the challenges faced by contemporary soft-
ware systems. Singularity is approaching these chal-
lenges by simultaneously pushing the state of the art in
operating systems, run-time systems, programming lan-
guages, and programming tools—the foundation on
which software is built. The Singularity OS is first and
foremost a research system. Singularity strives for
minimalism and design clarity, and makes extensive use
of modern languages and tools.

By plan, performance is secondary to other research
objectives such as security, dependability, and sound-
ness of design. However, in places where we believe
performance is central to the research challenge, such as
streamlining cross-process communication, we strive for
high performance solutions that also meet the other ob-
jectives.

To increase our ability to conduct a broad new OS re-
search agenda, we have forgone compatibility with pre-
vious operating systems. Our experience is that new
abstractions are best developed in an environment free
of contradictory legacy requirements and then ported to
legacy environments when the abstractions have ma-
tured. We recognize that this is a calculated risk; in the
longer term, we have made provisions to implement a
virtual machine monitor in Singularity as legacy support
becomes a requirement.

3.1 Design Choices
A key focus of Singularity research is improving sys-

tem dependability. Singularity improves dependability
by dramatically increasing the scope of sound verifica-
tion techniques to detect sources of unexpected system
behavior. To broaden the scope of sound verification
techniques, Singularity fixes the behavior of system
components as early as possible in lifetime of their code
(see Figure 1). To lengthen the scope of sound verifica-
tion techniques, Singularity constrains system organiza-
tion and preserves metadata so that verification results
can be applied even to late-bound composites.

Design
Time

Compile
Time

Install
Time

Load
Time

Run
Time

Post
Mortem

Figure 1. Code lifetime of a software component.

Singularity incorporates three key design choices to
improve system dependability. These design choices
are: an abstract instruction set as part of the system’s
application binary interface (ABI), a unified extension
architecture, and a first-class application abstraction.
The abstract instruction set provides the OS with a
flexible layer of indirection between application code
and a processor’s instruction stream. The unified exten-
sion architecture enables rich, inexpensive, and safe
interaction between system components. The applica-
tion abstraction enables OS management of applications
and integration of applications into the security model
as security principles.

Early indications are that these design choices also
have a positive impact on the challenges of system secu-
rity, configuration, and extension. System security and
configuration in Singularity are given much deeper
treatment by Abadi et al. [1] and DeTreville [8], respec-
tively.

3.1.1 Abstract Instruction Set
Singularity executables represent executable code in

an abstract instruction set, called MSIL. MSIL is Mi-
crosoft’s implementation of the ECMA Common Inter-
mediate Language [25]. All third-party executables,
including applications and device drivers, are delivered
to Singularity as type-safe MSIL binaries.

Singularity requires that all user MSIL be type safe,
which eliminates an entire class of programmer errors
due to erroneous or malicious pointer arithmetic. Be-
cause Singularity controls the translation of MSIL into
processor instructions, the OS retains the opportunity to
insert trusted instruction sequences into the unprivi-
leged, but verified, instruction stream. The abstract
instruction set also opens new opportunities to dynami-
cally adjust the trade-offs between security and per-
formance, and it allows rigorous analysis and instru-
mentation of application code.

3.1.2 Unified Extension Architecture
Singularity provides one extension architecture for the

operating system and applications. Like previous mi-
cro-kernels [2][16][18], Singularity incorporates a
process-based extension model. Singularity, however,
assumes a more aggressive closed-process architecture
for both OS and application extensions.

Singularity processes are closed worlds in two re-
gards. First, Singularity disallows shared memory be-
tween processes; Singularity processes exchange data
exclusively through messages, which are visible to only
one process at a time. Second, once execution begins
within a process, no new code may be added to the
process. Singularity disallows both loading of new
code modules and generation of new code into an exist-
ing process.

Any OS or application extension code can be loaded
only into a child process, separated by a strong isolation
boundary. Communication between host and extension
across the process isolation boundary is restricted to
verified message-passing channels. Channels are
strongly typed with contracts. All cross-channel inter-
actions and contracts are statically verified using a tech-
nique called conformance checking [7]. Conformance
checking guarantees that a contract is fully specified,
that two parties communicating through a contract will
not deadlock, and that neither party will receive an un-
expected message.

By disallowing dynamic loading of new code into a
process, Singularity processes become a closed world in
which analysis tools can make sound assumptions about
process states, invariants, and valid state transitions.
The closed-world extension architecture opens new
opportunities for static analysis and optimization.

3.1.3 Application Abstraction
Singularity raises the notion of an application to a

first-class OS abstraction. Applications have security
identities and signed manifests declaring their constitu-
ent components. Installation, maintenance, and removal
of applications are all operations controlled by the OS.

Applications are strongly isolated. Access to shared
resources—including other applications—is mediated
through the Singularity security model. The security
model uses code identity and component relationships
in access control checks [1].

The application abstraction is recursively applied to
the OS itself, with the kernel and other OS components
described by manifests. Manifests form the roots of a
metadata infrastructure that enables introspection across
the entire system –both applications and operating sys-
tem. Through this metadata it should be possible, for
example, to examine an offline Singularity system im-
age and determine if it has the necessary components
and configuration to run on a specific hardware configu-
ration or host a specific application. A specific Singu-
larity system as represented by an installation image
then becomes a self-describing artifact, not just a col-
lection of bits accumulated with at best an anecdotal
history.

Most operating systems install and uninstall applica-
tions through imperative updates to mutable configura-
tion information held in the file system and in configu-
ration registries. We expect to extend Singularity’s ap-
plication abstraction to support a declarative form of
configuration for a whole system, which we expect will
eliminate whole classes of system misconfiguration [8].

3.2 Singularity Architecture
Singularity is a type-safe OS. Where traditional oper-

ating systems present untyped memory and the hard-

ware instruction set to applications, Singularity replaces
these with the abstractions of typed memory and an
abstract instruction set, in the form of type-safe MSIL.

Singularity relies on type-safety and control of the
translation of the abstract instruction set to machine
code to enforce system protection boundaries. This
allows faster and more efficient process-to-kernel con-
text switches and communication between processes.

At the heart of the system is a trusted computing base
(TCB), see Figure 2. The Singularity TCB is composed
of the kernel proper, trusted runtime code, and MSIL
translators. The TCB maintains security policies and
guarantees that no untrusted or unverified instructions
ever execute. The TCB ensures process integrity by
providing isolated object spaces for processes and con-
straining IPC communication to contract-conforming
channels.

Most of the TCB is written in Sing#, an extension of
C# with specifications on objects and conformance-
checked channels. The object specifications come from
Spec# [4], which extends C# with pre-conditions and
post-conditions on methods, and invariants on class
variables. An implementation conforms to a contract if
it only sends or receives messages over the channels
those message described in the channel and all channel-
visible state changes conform to the state machine in the
channel contract.

M
S

IL
 V

er
ifi

er
 &

C
od

e
G

en
er

at
or

s

M
S

IL
 V

er
ifi

er
 &

C
od

e
G

en
er

at
or

s

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

Processors and Other Hardware

Kernel Runtime

Hardware Abstraction Layer

P
ro

ce
ss

es

Memory Manager

M
S

IL
 C

od
e

T
ra

ns
la

to
rs

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

D
ae

m
on

s

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

F
ile

 S
ys

te
m

s

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

N
et

w
or

k
P

ro
to

co
ls

U
se

r
P

ro
gr

am
s

U
se

r
P

ro
gr

am
s

D
ev

ic
e

D
riv

er
s

Assembly & C++ Code

Channel Mgr.Scheduler

Metadata Manager

I/O Manager

Loader

T
ru

st
ed

 C
om

pu
tin

g

B
as

e

Security Mgr.

Figure 2. Singularity Architecture.

Portions of the TCB, including the per-process gar-
bage collectors (GCs), are written in unsafe C#. At the
bottom of the system, a small body of C++ and assem-
bly code provides the lowest portions of the hardware
abstraction layer (HAL). Spec# and C# codes are emit-
ted as MSIL and translated to hardware instructions.
The C++ code is compiled directly to the hardware in-
struction set.

All third-party binaries, including applications, exten-
sions, and device drivers, are delivered to Singularity as
type-safe MSIL binaries. Each process receives its own
memory pages, but type safety and garbage collection
guarantee that no process can hold pointers to any page
it does not rightfully own. As a result, most of the sys-

tem, including third-party code, can run in the same
address space and hardware protection domain as the
kernel.

MSIL binaries may be translated into hardware in-
struction streams at load or install time based on meta-
data in the application manifest. Caching of hardware
instruction streams is invisible to both applications and
users.

The Singularity kernel integrates some of the runtime
services of the CLI with traditional kernel-based OS
services such as scheduling, IPC, and I/O management.
By redrawing the line between the runtime and the ker-
nel, Singularity eliminates redundancies in resource
management and security policy. The runtime also en-
joys access to kernel features, such as direct access to
the processor’s MMU.

Singularity’s implementation of CLI features is fac-
tored to minimize code in the trusted computing base.
Code translators reside in processes outside the kernel
and convert MSIL into verified hardware instruction
streams. The loader caches hardware instruction
streams and maps them into processes. The memory
manager includes the GC and its accompanying facili-
ties such as the GC write barrier. The metadata man-
ager acts as a repository for traditional CLI code meta-
data, such as type information required for garbage col-
lection. The metadata manager also coordinates infor-
mation related to the application abstraction and appli-
cation manifests.

The Singularity architecture supports multiple MSIL
code translators. Individual translators may generate
qualitatively different code from the same input. For
example, one translator might optimize for performance
while another may optimize for security by insert secu-
rity automata [19] into the code. In the future, addi-
tional translators might target secondary processors
such as GPUs.

3.3 Project Status
The Singularity system has been under design and de-

velopment for a little over a year. Although still a work
in progress, Singularity is now a recognizable operating
system with threads, processes, channels, an I/O subsys-
tem, device drivers, a TCP/IP network stack, a base CLI
class library and runtime, and a kernel debugger. Sin-
gularity boots on PC hardware using the NVIDIA
nForce4 chipset and under the Virtual PC VMM. No-
table missing features include a GUI and virtual mem-
ory paging. The first version of the application abstrac-
tion work is coded, but has not yet been integrated with
the rest of the system.

Over the next year, we intend to deploy the Singular-
ity system and a small set of applications into the homes
of approximately 50 researchers as a home service ap-
pliance. Our test deployment will target non-traditional

applications, in particular, applications where the ser-
vice appliance hosts services provided and managed by
multiple third parties. A key objective of the deploy-
ment is to measure dependability of the current architec-
ture and to experiment with the application abstraction
to automate system configuration.

4. Conclusions
The world needs broad operating system research.

Dependability, security, system configuration, system
extension, and multi-processor programming illustrate
areas were contemporary operating systems have failed
to meet the software challenges of the modern comput-
ing environment.

The OS research community, in collaboration with re-
searchers from the computer architecture, programming
languages, and software tools communities, are well
positioned to provide innovative solutions to today’s
software challenges. If the research community fails to
take up this challenge, practitioners will likely provide
incomplete solutions developed under competitive du-
ress; the outcome is not likely to be a happy one.

Contemporary operating systems, both proprietary and
open source, are constrained by backward compatibility
and are unlikely to make the radical changes necessary
to improve a typical user’s computing experience with-
out clear research guidance. A generation of orthodoxy
has led software systems to this unsatisfying state.

We believe the OS research community should em-
brace this opportunity. We recognize that such oppor-
tunity does not come without risk. Many nice research
OS abstractions have fallen by the wayside. However,
as user dissatisfaction with the status quo continues to
rise, unique opportunities may arise for either new op-
erating systems or adoption of new OS abstractions
within existing systems.

For our part, the Singularity project is responding to
this opportunity by re-examining the fundamental ab-
stractions of software systems through adoption of three
design choices: an abstract instruction set, a unified
extension architecture, and a first-class application ab-
straction.

5. Acknowledgements
We thank Martín Abadi, Mark Aiken, Paul Barham,

John DeTreville, Orion Hodson, Mike Jones, Nick
Murphy, and Ben Zorn for their help preparing this pa-
per. We also thank the anonymous referees for valuable
suggestion to improve the content and presentation of
this paper.

References
[1] M. Abadi, A. Birrell, and T. Wobber. Access Control

in a World of Software Diversity. Proc. of Hot OS X:
The 10th Workshop on Hot Topics in Operating Sys-
tems, June 2005.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A. Tevanian, and M. Young. Mach: A new ker-
nel foundation for UNIX development. Summer
USENIX Conference, pp. 93-112, 1986.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, A. Warfield. Xen and
the Art of Virtualization. Proc. of the 19th ACM Sym-
posium on Operating Systems Principles, pp. 164-177,
2003.

[4] M. Barnett, K. R. M. Leino, and W. Schulte, The Spec#
Programming System: An Overview. Proc. of Con-
struction and Analysis of Safe, Secure and Interoper-
able Smart Devices, 2004.

[5] B. N. Bershad, S. Savage, P. Pardyak, E.G. Sirer, M.E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility safety and performance in the SPIN oper-
ating system. Proc. of the 15th Symposium on Operating
Systems Principles, pp. 267-283, 1995.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brooks for GPUs:
stream computing on graphics hardware. Proc. of the
2004 SIGGRAPH Conference, pp. 777-786, 2004.

[7] S. Chaki, S. K. Rajamani, and J. Rehof, Types as Mod-
els: Model Checking Message-Passing Programs. Proc.
of the 29th ACM Symposium on Principles of Program-
ming Languages. pp. 45-57, 2002.

[8] J. DeTreville. Making system configuration more de-
clarative. Proc. of Hot OS X: The 10th Workshop on Hot
Topics in Operating Systems, June 2005.

[9] S. Devine, E. Bugnion, and M. Rosenblum. Virtualiza-
tion system include a virtual machine monitor for a
computer with a segmented architecture. US Patent,
6397242, 1998.

[10] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum.
Implementing an OS Scheduler for Multithreaded Chip
Multiprocessors. Work-in-Progress Reports, 6th Sym-
posium on Operating Systems Design and Implementa-
tion, 2004.

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, D.
Boneh. Terra: A Virtual-Machine Based Platform for
Trusted Computing. Proc. of the 19th ACM Symposium
on Operating Systems Principles, pp. 193-206. 2003.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
language specification. Addison-Wesley, 2000.

[13] M. Kaashoek, D.R. Engler, G.R. Ganger, H.M. Briceño,
R. Hunt, D. Mazières, T. Pinckney, R. Grimm, J. Jan-
notti, and K. Mackenzie. Application performance and
flexibility on exokernel systems, Proc. of the 16th ACM
Symposium on Operating Systems Principles, pp. 52-
65. 1997.

[14] P.H.Kamp and R.N.M. Watson, Jails: Confining the
omnipotent root. SANE 2000. May 2000.

[15] C. Kaner and D.L. Pels, Bad Software: What to Do
When Software Fails. John Wiley & Sons, 1998.

[16] J. Liedtke. Toward real µ-kernels. Communications of
the ACM, 39(9):70-77, September 1996.

[17] R. Pike. Systems Software Research is Irrelevant.
Invited talk, University of Utah, February 2000.

[18] M. Rozier, A. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. CHORUS
distributed operating system. Computing Systems,
1(4):305-370, 1988.

[19] Schneider, F.B. Enforceable Security Policies. ACM
Transactions on Information and System Security
(TISSEC), 3 (1). 30-50, 2000.

[20] Secunia, Statistics of released advisories by project,
http://secunia.com/product, 2005.

[21] M. Seltzer, Y. Endo, C. Small, and K. A. Smith. Deal-
ing With Disaster: Surviving Misbehaved Kernel Ex-
tensions. Proc. of the 2nd Symposium on Operating Sys-
tems Design and Implementation, pp. 213-228, 1996.

[22] M. Swift, B. N. Bershad, and H. M. Levy. Improving
the Reliability of Commodity Operating Systems, ACM
Transactions on Computer Systems, 22(4), Nov. 2004.

[23] R. Wahbe, S. Lucco, T.E. Anderson, and S. Graham.
Efficient Software-Based Fault Isolation. Proc. of the
14th ACM Symposium on Operating Systems Principles,
pp. 203--216 1993.

[24] Common Language Infrastructure (CLI): Partition I:
Architecture, ISO/IEC 23271:2003.

[25] Common Language Infrastructure (CLI): Partition II:
CIL Instruction Set, ISO/IEC 23271:2003.

i Data from security advisories suggest that no contemporary
system, either commercial or open source, has a monopoly on
dependability problems [20].
ii An oil change (1 hour) every 5,000 miles (100 hours at 50
miles/hour) is typical and does not take into account other
preventive maintenance, which typically takes a car out of
commission for an entire day.
iii Microsoft’s commercial implementation of the CLI is
known as the Common Language Runtime (CLR). The CLR
is the core of Microsoft’s .NET Framework.

