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Abstract

As virtual machines become pervasive users will be able
to create, modify and distribute new “machines” with un-
precedented ease. This flexibility provides tremendous ben-
efits for users. Unfortunately, it can also undermine many
assumptions that today’s relatively static security architec-
tures rely on about the number of hosts in a system, their
mobility, connectivity, patch cycle, etc.

We examine a variety of security problems virtual com-
puting environments give rise to. We then discuss potential
directions for changing security architectures to adapt to
these demands.

1 Introduction

Virtual machines allow users to create, copy, save
(checkpoint), read and modify, share, migrate and roll
back the execution state of machines with all the ease
of manipulating a file. This flexibility provides signifi-
cant value for users and administrators. Consequently,
VMs are seeing rapid adoption in many computing en-
vironments.

As virtual machine monitors provide the same in-
terface as existing hardware, users can take advan-
tage of these benefits with their current operating sys-
tems, applications and management tools. This often
leads to an organic process of adoption, where servers
and desktops are gradually replaced with their virtual
equivalents.

Unfortunately, the ease of this transition is decep-
tive. As virtual platforms replace real hardware they
can give rise to radically different and more dynamic
usage models than are found in traditional computing
environments.

This can undermine the security architecture of
many organizations which often assume predictable
and controlled change in number of hosts, host config-
uration, host location, etc. Further, some of the useful
mechanisms that virtual machines provide (e.g. roll-
back) can have unpredictable and harmful interactions
with existing security mechanisms.

Virtual computing platforms cannot be deployed

securely simply by dropping them into existing sys-
tems. Realizing the full benefits of these platforms
demands a significant re-examination of how security
is implemented.

In the next section we will elaborate on the capabil-
ities that virtual machines provide, new usage mod-
els they give rise to, and how this can adversely im-
pact security in current systems. In section 3 we will
explore how virtual environments can evolve to meet
these challenges. We review related work in section 4
and offer conclusions in section 5.

2 Security Problems in Virtual Environ-
ments

A virtual machine monitor (VMM) (e.g. VMware
Workstation, Microsoft Virtual Server, Xen), provides
a layer of software between the operating system(s)
and hardware of a machine to create the illusion of one
or more virtual machines (VMs) on a single physical
platform. A virtual machine entirely encapsulates the
state of theguest operating systemrunning inside it.

Encapsulated machine state can be copied and
shared over networks and removable media like a
normal file. It can also be instantiated on existing
networks and requires configuration and management
like a physical machine. VM state can be modified
like a physical machine, by executing over time, or
like a file, through direct modification.

Scaling Growth in physical machines is ultimately
limited by setup time and bounded by an organiza-
tion’s capital equipment budget. In contrast, creating
a new VM is as easy as copying a file. Users will fre-
quently have several or even dozens of special purpose
VMs lying around e.g. for testing or demonstration
purposes, “sandbox” VMs to try out new applications,
or for particular applications not provided by their reg-
ular OS (e.g. a Windows VM running Microsoft Of-
fice). Thus, the total number of VMs in an organi-
zation can grow at an explosive rate, proportional to
available storage.

The rapid scaling in virtual environments can tax



the security systems of an organization. Rarely are
all administrative tasks completely automated. Up-
grades, patch management, and configuration involve
a combination of automated tools and individual ini-
tiative from administrators. Consequently, the fast and
unpredictable growth that can occur with VMs can ex-
acerbate management tasks and significantly multiply
the impact of catastrophic events, e.g. worm attacks
where all machines should be patched, scanned for
vulnerabilities, and purged of malicious code.

Transience In a traditional computing environment
users have one or two machines that are online most
of the time. Occasionally users have a special purpose
machine, or bring a mobile platform into the network,
but this is not the common case. In contrast, collec-
tions of specialized VMs give rise to a phenomenon
in which large numbers of machines appear and dis-
appear from the network sporadically.

While conventional networks can rapidly “anneal”
into a known good configuration state, with many
transient machines getting the network to converge to
a “known state” can be nearly impossible.

For example, when worms hit conventional net-
works they will typically infect all vulnerable ma-
chines fairly quickly. Once this happens, administra-
tors can usually identify which machines are infected
quite easily, then cleanup infected machines and patch
them to prevent re-infection, rapidly bringing the net-
work back into a steady state.

In an unregulated virtual environment, such a
steady state is often never reached. Infected machines
appear briefly, infect other machines, and disappear
before they can be detected, their owner identified,
etc. Vulnerable machines appear briefly and either be-
come infected or reappear in a vulnerable state at a
later time. Also, new and potentially vulnerable vir-
tual machines are created on an ongoing basis, due to
copying, sharing, etc.

As a result, worm infections tend to persist at a low
level indefinitely, periodically flaring up again when
conditions are right.

The requirement that machines be online in con-
ventional approaches to patch management, virus
and vulnerability scanning, and machine configura-
tion also creates a conflict between security and us-
ability. VMs that have been long dormant can require
significant time and effort to patch and maintain. This
results in users either forgoing regular maintenance
of their VMs, thus increasing the number of vulner-
able machines at a site, or losing the ability to spon-
taneously create and use machines, thus eliminating a
major virtue of VMs.

Software Lifecycle Traditionally, a machine’s life-
time can be envisioned as a straight line, where the
current state of the machine is a point that progresses
monotonically forward as software executes, configu-
ration changes are made, software is installed, patches
are applied, etc. In a virtual environment machine
state is more akin to a tree: at any point the execution
can fork off into N different branches, where multiple
instances of a VM can exist at any point in this tree at
a given time.

Branches are caused by undo-able disks and check-
point features, that allow machines to be rolled back
to previous states in their execution (e.g. to fix con-
figuration errors) or re-run from the same point many
times, e.g. as a means of distributing dynamic content
or circulating a “live” system image.

This execution model conflicts with assumptions
made by systems for patch management and main-
tenance, that rely on monotonic forward progress.
For example, rolling back a machine can re-expose
patched vulnerabilities, reactivate vulnerable services,
re-enable previously disabled accounts or passwords,
use previously retired encryption keys, and change
firewalls to expose vulnerabilities. It can also rein-
troduce worms, viruses, and other malicious code that
had previously been removed.

A subtler issue can break many existing security
protocols. Simply put, the problem is that while VMs
may be rolled back, an attackers’ memory of what has
already been seen cannot.

For example, with a one-time password system like
S/KEY, passwords are transmitted in the clear and se-
curity is entirely reliant on the attacker not having
seen previous sessions. If a machine running S/KEY
is rolled back, an attacker can simply replay previ-
ously sniffed passwords.

A more subtle problem arises in protocols that rely
on the “freshness” of their random number source
e.g. for generating session keys or nonces. Consider
a virtual machine that has been rolled back to a point
after a random number has been chosen, but before it
has been used, then resumes execution. In this case,
randomness that must be “fresh” for security purposes
is reused.

With a stream cipher, two different plaintexts could
be encrypted under the same key stream, thus expos-
ing the XOR of the two messages. This could in turn
expose both messages if the messages have sufficient
redundancy, as is common for English text. Non-
cryptographic protocols that rely on freshness are also
at risk, e.g. reuse of TCP initial sequence numbers can
allow TCP hijacking attacks [2].

Zero Knowledge Proofs of Knowledge (ZKPK), by



their very nature, are insecure if the same random
nonces are used multiple times. For example, ZKPK
authentication protocols, such as Fiat-Shamir authen-
tication [5] or Schnorr authentication [12], will leak
the user’s private key if the same nonce is used twice.
Similarly, signature systems derived from ZKPK pro-
tocols, e.g. the Digital Signature Standard (DSS), will
leak the secret signing key if two signatures are gen-
erated using the same randomness [1].

Finally, cryptographic mechanisms that rely on pre-
vious execution history being thrown away are clearly
no longer effective, e.g. perfect forward secrecy in
SSL. Such mechanisms are not only ineffective in vir-
tual environments, but constitute a significant and un-
necessary overhead.

Diversity Many IT organizations tackle security
problems by enforcing homogeneity: all machines
must run the most current patched software. VMs
can facilitate more efficient usage models which de-
rive benefit from running unpatched or older versions
of software. This creates a range of problems as one
must try and maintain patches or other protection for
a wide range of OSes, and deal with the risk posed by
having many unpatched machines on the network.

For example, at many sites today users are simply
supplied with VMs running their new operating en-
vironment and applications are gradually migrated to
that environment, or conversely, legacy applications
are run in a VM. This can mitigate the need for long
and painful upgrade cycles, but leads to a prolifera-
tion of OS versions. This makes patch management
more difficult, especially in the presence of older, dep-
recated versions of operating systems.

Virtual machines have also changed the way that
software testing takes place. Previously one required
a large number of usually dedicated test machines to
test out a new piece of software, one for each different
OS, OS version (service pack), patch level, etc. Now
each developer or tester can simply have their own
collection of virtual test machines. Unfortunately, if
these machines are not secured they rapidly become a
cesspool of infected machines.

Mobility VMs provide mobility similar to a normal
file; they can easily be copied over a network or car-
ried on portable storage media. This can give rise to
host of security problems.

For a normal platform, the trusted computing base
(TCB) consists of the hardware and software stack. In
a VM world, the TCB consists of all of the hosts that
a VM has run on. Combined with a lack of history,
this can make it very difficult to figure out how far
a compromise has extended, e.g. if a file server has

been compromised, any VM that was on the server
may have been backdoored by an attacker. Determin-
ing which VMs were exposed, subsequently copied,
etc. can be quite challenging.

Similar problems arise with worms and viruses. In-
fecting a VM is much like infecting a normal exe-
cutable. Further, direct infection provides access to
every part of a machines state irrespective of protec-
tion in the guest OS.

Using VMs as a general-purpose solution for mo-
bility [10, 11] poses even more significant issues. Mi-
grating a VM running on someone’s home machine of
unknown configuration into a site’s security perimeter
is a risky proposition at best.

From a theft standpoint, VMs are easy to copy to
a remote machine, or walk off with on a storage de-
vice. Similar issues of proprietary data loss due to
laptop theft are consistently cited as one of the largest
sources of financial loss due to computer crime [9].

That VMs are such coarse grain units of mobil-
ity can also magnify the impact of theft. Facilitat-
ing easy movement of one’s entire computing envi-
ronment (e.g. on a USB keychain) makes users more
inclined to carry around all of their (potentially sensi-
tive) files instead of simply the ones they need.

Identity In traditional computing environments
there is often an ad-hoc identity associated with a ma-
chine. This can be as simple as a list of MAC ad-
dresses, employee names, and office numbers. With-
out such mechanisms it can be extremely difficult to
establish who is responsible for a machine, e.g. who
to contact if the machine turns malicious or who is
responsible for its origin/current state.

Unfortunately, these static methods are impractical
for VMs. The dynamic creation of VMs makes the use
of MAC addresses infeasible. Often VMs just pick a
random MAC address (e.g. in VMware Workstation),
in the hope of avoiding collisions.

Identifying machines by location/Ethernet port
number is also problematic since a VM’s mobility
makes it difficult to establish who owns a VM running
on a particular physical host. Further, there are often
multiple VMs on a physical host, thus shutting off the
port to a machine can end up disabling non-malicious
VMs as well.

Establishing responsibility is further complicated
as VMs have more complicated “ownership histories”
than normal machines. A specialized virtual machine
may be passed around from one user to the next, much
like a popular shell script. This can make it very diffi-
cult to establish just who made what changes to get a
machine into its present state.



Data Lifetime A fundamental principle for build-
ing secure systems is minimizing the amount of time
that sensitive data remains in a system [6]. A VMM
can undermine this process. For example, the VMM
must log execution state to implement rollback. This
can undermine attempts by the guest to destroy sen-
sitive data (e.g. cryptographic keys, medical docu-
ments) since data is never really “dead,” i.e. data can
always be made available again within the VM.

Outside the VM, logging can leak sensitive data
to persistent storage, as can VM paging, checkpoint-
ing, and migration, etc. This breaks guest OS mech-
anisms to prevent sensitive data from reaching disk,
e.g. encrypted swap, pinning sensitive memory, and
encrypted file systems.

As a result sensitive files, encryption keys, pass-
words, etc. can be left on the platform hosting a VM
indefinitely. Because of VMs’ increased mobility,
such data could easily be spread across several hosts.

Similar Problems in Traditional Computing Envi-
ronments Some existing platforms exhibit security
problems similar to those found in virtual environ-
ments. Laptops are known for making it difficult to
maintain a meaningful network perimeter by trans-
porting worms into internal networks, and sensitive
data (e.g. source code) out, thus making the firewall
irrelevant. Undo features like Windows Restore intro-
duce many of the same difficulties as rollback in VMs.
Transience occurs with dual boot machines, and other
occasionally used platforms.

These examples can lend insight into the impact of
VMs. However, they differ in a variety of ways. Most
of these technologies are deployed in limited parts
of IT organizations or see infrequent use; as virtual-
ization is adopted, these dynamic behaviors become
the common case. Similar characteristics manifest by
other platforms (e.g. mobility, transience) tend to be
more extreme in VMs as VMs are software state. Fi-
nally, VMs tend to magnify problems with the rapid
growth and novel uses they facilitate.

Notably, adapting virtual computing environments
to meet these challenges also provides a solution for
mobile platforms.

3 Towards Secure Virtual Environments

The dynamic usage models facilitated by virtual
platforms demand a dedicated infrastructure for en-
forcing security policies. We can provide this by in-
troducing a ubiquitous virtualization layer, and mov-
ing many of the security and managment functions of
guest operating systems into this layer.

Ubiquity allows administrators to flexibly re-
introduce the constraints that virtualization relaxes on

mobility and data lifetime. Moving security and man-
agement functions (e.g. firewalling, virus scanning,
backup) from the guest OS to the virtualization layer
allows delegation to a central administrator. It also
permits management tasks to be automated and per-
formed while VMs are offline, thus aiding issues of
usability, scale and transience.

We will briefly outline what such a layer would
look like and how it can address the challenges raised
in the prior section.

Outlining a Virtualization Layer The heart of a
virtualization layer is a high assurance virtual ma-
chine monitor. On top of it would run a secure dis-
tributed storage system, and components replacing se-
curity and management functions traditionally done in
the guest OS.

Enforcing policies such as limiting VM mobility
and connectivity requires that the virtualization layer
on a particular machine be trusted by the infrastruc-
ture. Virtualization layer integrity could be veri-
fied either through normal authentication and access
controls, or through dedicated attestation hardware
e.g. TCPA.

Policy at this layer could limit replication of sen-
sitive VMs and control movement of VMs in and out
of a managed infrastructure. Document control style
policies could prevent certain VMs from being placed
onto removable media, limit which physical hosts a
VM could reside on, and limit access to VMs contain-
ing sensitive data to within a certain time frame.

User and machine identities at this layer could be
used to reintroduce a notion of ownership, responsi-
bility and machine history. Tracking information such
as the number of machines in an organization and their
usage patterns could also help to gauge the impact of
potential threats.

Encryption at this layer could help address data
lifetime issues due to VM swapping, checkpointing,
rollback, etc.

VMM Assurance A VMM’s central role is provid-
ing secure isolation. The need to preserve this prop-
erty is sometimes seen as an argument against moving
functionality out of the guest operating system. How-
ever, such arguments overlook the inherent flexibility
available in a VMM. In essence, a virtual machine
monitor is nothing more than a microkernel with a
hardware compatibility layer. As such, it can support
arbitrary protection models for services running at the
virtualization layer.

For example, firewall functionality running outside
of a guest OS would be hosted in its own protection
domain (e.g. a paravirtualized VM), and could utilize



a special purpose operating system affording better as-
surance, greater efficiency, and a more suitable protec-
tion model than common OSes.

Other requirements for building a high assurance
VMM (e.g. device driver isolation) have been ex-
plored elsewhere [7].

3.1 Benefits

Moving security and management functions out of
the guest OS provides a variety of benefits including:

• Delegating Management
A virtual environment provides maximum utility

when users can focus on using their VMs however
they please, without having to worry about manag-
ing them.

Moving security functionality out of guest OSes
makes it easier to delegate management responsi-
bilities to automated services and site administra-
tors. It also obviates the need for homogeneous
systems where every machine runs a common man-
agement suite (e.g. LANDesk), or where an admin-
istrator must have an account on every machine.

As administrators can externally modify VMs,
tasks not moved outside of the VM can still be del-
egated while VMs are offline. Much of the required
scanning, patching, configuration, etc. can be done
by a service running on the virtualization layer
that would periodically scan and maintain archived
VMs.

In a virtualization layer, VMs are first-class ob-
jects, instead of merely a collection of bits (as in
today’s file systems). Thus, operations that today
require reconfiguration could be provided transpar-
ently, e.g. users should be able to copy VMs just
as they would a normal file, without having to
bring them online and reconfigure. The infrastruc-
ture could appropriately update hostname, crypto-
graphic keys, etc. to reflect the new machine iden-
tity.

Suspended VMs could be executed in a “sand-
boxed” environment to allow certain configuration
changes to anneal and ensure that they do not break
the guest.

• Guest OS Independence
Moving security and managment components

to the virtualization layer makes them indepen-
dent of the structure of the guest operating system.
Thus, these components can provide greater assur-
ance, as they can largely specify their own software
stack and protection model and are isolated from
the guest OS. In contrast, today’s host-based fire-
walls, intrusion detection and anti-virus software
are tightly coupled with the fragile monolithic op-

erating systems they try to protect, making them
trivial to bypass.

This flexibility opens the door for the adoption
of more secure and flexible operating systems as a
foundation for infrastructure services. Further, be-
cause the infrastructure can now authenticate and
trust components running at network end-points, it
can now delegate responsibility to these end-points,
thus making policies such as trustworthy network
quarantine (i.e. limiting network access based on
VM contents) feasible.

• Lifecycle IndependenceMoving security relevant
state out of the guest OS solves many difficulties
caused by rollback.

This can be accomplished by moving secu-
rity mechanisms out of the guest completely, into
e.g. an external login mechanism, or by modify-
ing guests to store state such as user account in-
formation, virus signatures, firewall rules, etc. in
dedicated storage that would operate independent
of rollback. A combination of both approaches is
likely necessary.

For protocol related issues, making guest soft-
ware lifecycle independant is likely the easiest path
forward, and seems possible without major changes
to today’s systems.

As a first step, lifecycle dependent algorithms
could be replaced with lifecycle independent vari-
ants, e.g. ZKPK based signature schemes (such as
DSS) can be replaced with lifecycle independent
signatures schemes such as RSA.

Guest software must have also some way of be-
ing notified when a VM has been restarted, so that it
can refresh any keys it is currently holding, perhaps
a variation on existing approaches for notifying ap-
plications when a laptop has awakened from hiber-
nation. Finally, randomness (e.g. data from Linux’s
/dev/random ) should be obtained directly from
the VMM instead of relying on state/events within
the VM.

• Securely Supporting Diversity
A virtual infrastructure should allow users to

use old unpatched VMs with diverse OSes much
as they would be able to use old or non-standard
files without having to change them. This avoids
problems such as patches breaking VMs and being
unable to secure deprecated versions of software
where patches are no longer available.

Enforcing policy from outside of VMs facilitates
this through the use of vulnerability specific pro-
tection as an alternative to software modification.
For example, vulnerability specific firewall rules,
such as Shields [13], can allow users to run un-



patched versions of applications and operating sys-
tems while still accessing as much network func-
tionality as is safely possible.

Finally, today greater diversity requires sup-
porting N different versions of security software
(e.g. firewall, intrusion detection). While special-
ized policy is still required for scanning particu-
lar OSes, putting management at the virtualization
layer eliminates this redundant infrastructure.

There are many challenges to building an architec-
ture that securely allows the full potential of VMs to
be realized. However, we believe the direction for-
ward is clear. Moving security relevant functional-
ity out of guest operating system to a ubiquitous vir-
tualization layer provides a more secure and flexible
model for managing and using VMs.

4 Related Work
A body of existing work has already examined the

security benefits of moving intrusion detection [8],
and logging [3, 4] out of the guest e.g. to leverage the
isolation provided by a VMM and ability to interpose
on all system events. Other work has also examined
the benefits of trust and flexible assurance provided by
placing components such as the firewall outside of the
VM [7].

A variety of recent projects have examined how
virtualization can enhance manageability [11], mo-
bility [10] and security [3, 4, 7, 8]. Unfortunately,
this work has only considered single hosts or assumed
an entirely new organizational paradigm (e.g. utility
computing), overlooking how virtual machine tech-
nology impacts security in current organizations.

Some of the problems presented here are beginning
to be addressed by VMware ACE, such as controlling
VM copying, preventing the spread of VM contents
(encrypted virtual disks and suspend files) and some
support for network quarantine.

In the absence of other published studies on VMs
within organizations, we have relied on our own ex-
perience and anecdotes from others while formulating
this work.

5 Conclusions
We expect end-to-end virtualization to become a

normal part of future computing environments. Un-
fortunately, simply providing a virtualization layer is
not enough. The flexibility that makes virtual ma-
chines such a useful technology can also undermine
security within organizations and individual hosts.

Current research on virtual machines has focused
largely on the implementation of virtualization and its
applications. We believe that further attention is due

to the security risks that accompany this technology
and the development of infrastructure to meet these
challenges.
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