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Abstract
Linux is increasingly used to power everything from
embedded devices to super computers. Developers of
such systems often start with a mainline kernel from
kernel.org and then apply patches for their appli-
cation domain. Many of these patches represent cross-
cutting concerns in that they do not fit within a single
program module and are scattered throughout the kernel
sources—easily affecting over a hundred files. It requires
nontrivial effort to maintain such a crosscutting patch,
even across minor kernel upgrades due to the variability
of the kernel proper. Moreover, it is a significant chal-
lenge to ensure the kernel’s correctness when integrating
multiple crosscutting concerns. To make matters worse,
developers use simple code merging tools that are limited
to textual substitution, with the result that patch mainte-
nance is error prone and time consuming. In this paper,
we propose a new semantic patch tool, called c4, de-
signed to simplify the management of OS variations and
thereby improving OS evolution.

1 Introduction
Over the past years open source operating systems, par-
ticularly Linux, have experienced tremendous growth.
Industry and governments alike are relying upon such
software to reduce the cost and time-to-market of de-
veloping WiFi routers, cell phones, and telecommunica-
tions equipment and of running services on specialized
servers, clusters, and high-performance super computers.
One important benefit of using Linux for these systems is
that developers have access to all kernel sources and can
easily create variants that are directly tailored for their
application domains. As such, Linux also is an attractive
platform for OS research, as it offers the potential for a
speedy technology transfer.

Major variants to a mainline Linux kernel are typ-
ically represented in terms of higher-level extensions
that are implemented through so-called patch sets or,
simply, patches. For example, embedded systems re-
quire changes that reduce the kernel’s memory footprint
(e.g., Linux-Tiny [16] or uCLinux [26]), desktops require
strong security mechanisms that reduce the impact of

viruses and worms (e.g., LSM [15]), time-shared servers
require resource management subsystems to isolate users
from each other (e.g., VServer [18] or CKRM [4]), and
super computers require special resource management
modifications that scale the OS to a large number of com-
ponents (e.g., CPUSETS [7]). Many of these kernel ex-
tensions do not fit within a single program module and
are scattered throughout the kernel sources. As shown
in the following table, each extension can easily cover a
hundred existing kernel files, even though it represents a
logical unit, expressing a single crosscutting concern:

Patch New Files Modified Kernel Files
Nooks [24] 68 108
CKRM [4] 48 53
LSM [15] 123 85

Kernel Probes [13] 13 20
LTT [17] 9 71

VServer [18] 40 211
Linux-Tiny [16] 7 142
CPUSETS [7] 1 3

ALSA [1] 200 540
LLA [19] 1 39

It requires non-trivial effort to maintain even a small
crosscutting extension between minor kernel upgrades
due to the variability of the kernel proper. Moreover, it
is a tremendous challenge to ensure the kernel’s correct-
ness when integrating multiple crosscutting kernel exten-
sions, as even for the small number of patch sets shown
in the above table there is significant overlap in the files
affected by the different extensions. To make matters
worse, developers currently use simple code merging
tools (e.g., diff and patch), which are limited to in-
dicating conflicts based upon textual comparison. Expe-
rience with maintaining a variant of the Linux kernel for
PlanetLab (which contains several major variants to the
mainline code base) as well as anecdotal evidence from
the Linux and OS research communities suggest that this
approach is error prone and time consuming.

Developers wishing to merge their kernel extensions
into the mainline code base must repeatedly go through
this process, because any non-trivial change to Linux’s
architecture takes time to be reviewed and accepted.



Anecdotal evidence (e.g., LSM, LTT, ALSA) suggests
that it may take anywhere from one to three years before
a crosscutting kernel extension is fully integrated into the
mainline kernel.

This leads to a natural selection of kernel extension
developers: those that are persistent and those that are
not. While this natural selection weeds out the weak,
it also eliminates strong work done by members of the
OS research community. For example, the Nooks [24]
project for recoverable Linux device drivers has garnered
best paper awards at both SOSP and OSDI. Yet the work
remains relegated to Linux 2.4.18, which was the kernel
version at the start of Nooks in Feb. 2002. The problem
is not laziness! Rather, with today’s tools, it is simply too
tedious to keep up with the changes that occur between
even minor releases of Linux, e.g., from 2.4.18 to 2.4.19.

Our position is that a better method is needed—
beyond diff and patch—that reduces the amount of
work it takes to maintain and review a crosscutting ker-
nel extension in Linux. The remainder of this paper de-
scribes our work towards such a solution: a semantic
patch system called c4 for CrossCutting C Code. A se-
mantic patch basically amounts to a set of transformation
rules that precisely specify the conditions under which
changes need to be made and the means for rewriting the
affected code. Its compact yet human readable form lets
a community of developers easily understand and discuss
a crosscutting kernel extension, thereby helping reduce
the time and effort required to evolve the kernel.

2 Motivating Observations
We studied a number of patch files—LTT, Kernel Probes,
LSM, and CKRM—that introduce new kernel extensions
as well as patch files that update existing code in Linux.
In general, the changes introduced by these patch files
fall into three categories∗:

• Logic changes. Modifications to the internal logic
of a function (e.g., to eliminate a bug).

• Behavior changes. Modifications to the semantics
of Linux’s existing interfaces (e.g., changing all file
operations to use ACLs rather than standard UNIX
permissions).

• Version changes. Modifications to either a func-
tion’s signature or the field makeup of a non-ADT
data structure (e.g., adding, deleting, or changing
the type of an argument or field).

Our preliminary analysis of patches that update exist-
ing kernel functionality shows that the bulk fall into the
logic changes category with very few version changes
and no behavior changes. In contrast, patches that intro-
duce new kernel extensions fall primarily into both the

∗A fourth category comprises modifications to Makefiles etc.,
which we do not consider.

behavior and version changes categories. The syntac-
tic substitution approach embodied by diff and patch
suffices for capturing and applying logic changes. After
all, they are of syntactic nature! However, both behavior
and version changes are of semantic nature, leading to
significant problems when capturing and applying such
changes with syntactic tools.

Behavior changes modify the semantics of system in-
terfaces. They are usually implemented by introducing
call-out hooks either at the beginning or end of the func-
tions that implement these interfaces. Yet logically, the
new functionality is executed either before or after the
hooked functions. In other words, the change in imple-
mentation is of a syntactic nature (i.e., beginning or end
of a function), whereas the behavioral change truly is of
a semantic nature (i.e., before or after a function). The
problem with patch sets is that any other textual modifi-
cation at the the same locations will result in a conflict.

To illustrate this problem, consider the patch set for
the Class-Based Kernel Resource Management (CKRM)
project [4]. CKRM is a new kernel mechanism that pro-
vides differentiated services for shared system resources,
including CPU time, tasks, memory, and disk I/O. The
application of this patch set results in a new Linux kernel
variant suitable for servers that require stronger resource
usage guarantees than the egalitarian approach used by
the unmodified mainline kernel.

The actual CKRM extension consists of a set of
files that specify where “hunks” of code are applied by
patch, identifying specific line numbers or relative off-
sets within specific files. For example, this portion of the
CKRM patch:
--- a/kernel/sys.c Sat Sep 18 19:28:57 2004
+++ b/kernel/sys.c Tue Feb 01 22:03:15 2005
@@ -638,6 +642,9 @@
else

return -EPERM;
+
+ ckrm_cb_gid();
+
return 0;

@@ -726,6 +733,8 @@
current->suid = current->euid;

current->fsuid = current->euid;
+
+ ckrm_cb_uid();
+
return security_task_post_setuid(old_ruid,

instruments kernel/sys.c with calls to the
ckrm cb gid()/uid() functions. Line numbers are
represented as relative offsets indicated by @@line-
info@@. Upon closer inspection of the patch we observe
a pattern: all calls to ckrm cb gid()/uid() (6 in total)
directly precede return statements.

The same pattern emerges for other kernel extensions,
such as LSM and VServer, that hook themselves into spe-
cific Linux subsystems. Thus, composing several such
kernel extensions or updating to a new release of the
kernel may result in unnecessary patch conflicts. Such



conflicts typically need to be resolved manually, which
is clearly tedious. Section 3 presents our solution to
this problem, which transforms behavior changes into
aspects using aspect-oriented software development [2]
(AOSD) techniques.

Version changes involve modifications to either a func-
tion’s signature or the field makeup of a data structure.
But changing a function’s signature or deleting/changing
a data structure’s fields can have far-reaching conse-
quences: it requires updating all modules that directly
use them. Consequently, capturing such changes with
diff and patch requires manually updating all de-
pendent modules. This is prohibitive when the interface
changes are in the kernel proper or in the generic device
driver framework and trigger corresponding changes in
specific device drivers—there might be hundreds.

Muller et. al [22] are exploring how to percolate such
interface changes throughout the Linux code base. Their
approach, similar to ours, builds on a kind of semantic
patch, which relies on code rewriting rules to automate
the task of updating dependent modules. While this ap-
pears promising, we observe that version changes might
be better handled by: (1) a systematic conversion of non-
ADTs used across Linux subsystems to ADTs, and (2)
using well established interface versioning techniques
such as Microsoft’s Component Object Model (COM).

3 The c4 Semantic Patch Compiler
Recognizing that behavioral changes are common to
new kernel extensions for Linux, our approach is to
make them part of the kernel’s architecture by leverag-
ing AOSD techniques. More specifically, our approach is
to express behavioral changes as semantic patches using
aspects, which provide a language-supported methodol-
ogy for integrating crosscutting concerns with a program.
The benefits of aspects are twofold. First, they provide
a well-defined specification of domain-specific features
that is separate from baseline functionality, yet can be au-
tomatically integrated with the kernel. Second, they en-
able automatic reasoning about the implications of com-
posing several crosscutting concerns and the identifica-
tion of semantic conflicts.

The main research questions raised by our approach
are (1) how to extend C with aspects without impact-
ing compatibility, readability, or performance and (2)
how to automate the identification and resolution of con-
flicts between aspects. However, fully exploring these
research questions requires building the corresponding
tools. To reduce the required engineering effort, we are
not implementing a self-contained C compiler for our
AOSD-enhanced C language, called c4 for CrossCut-
ting C Code. Rather, we leverage existing platform sup-
port for C and rely on a pipeline that first invokes the
C preprocessor, which resolves all # directives, then the

c4 compiler to translate aspect-enhanced code to plain
C, and finally gcc, which performs traditional optimiza-
tions and code generation. To further reduce the engi-
neering effort required for building c4, we are imple-
menting c4 on top of the xtc compiler framework [11],
which provides a toolkit for building extensible source-
to-source transformers. In the rest of this section, we
present the proposed aspect-oriented language enhance-
ments to C by example and then discuss our approach to
non-interference analysis for aspects.

3.1 The c4 Language
In c4, which is based on AspectC [6], aspects struc-
ture and modularize concerns that crosscut functions.
Due to space constraints, we do not define the c4
language in detail. Rather, we illustrate the gist of
its features on the example of instrumenting the ker-
nel with calls to ckrm cb gid()/uid() after the exe-
cution of sys setregid()/setreuid(), sys setgid()/setuid(),
and sys setresgid()/setresuid(), respectively:
aspect {

pointcut setuid() :
execution(long sys_setreuid(..)) &&
execution(long sys_setresuid(..)) &&
execution(long sys_setuid(..));

after setuid() { ckrm_cb_uid(); }

pointcut setgid() :
execution(long sys_setregid(..)) &&
execution(long sys_setresgid(..)) &&
execution(long sys_setgid(..));

after setgid() { ckrm_cb_gid(); }
}

The execution keyword refers to principled points in
the execution of a program called join points (e.g.,
sys setreuid). A pointcut statement groups one or
more join points, which can then be referenced by ad-
vice to define actions for these join points. In our exam-
ple, we only use after advice, which indicates that the
actions (the explicit C code) should be performed after
the execution of the join points.

The aspect code thus structures the modifications to
the mainline code, which are automatically merged, or
weaved, with the appropriate C code by the c4 compiler.
In contrast to the syntactic patch shown in Section 2, the
interaction with the kernel becomes explicit at the level
of functions and parameters involved; hence, code be-
comes more amenable to semantic analysis and develop-
ers can reason about any interactions at a higher level.
Previous work has shown that this reduces the complex-
ity of crosscutting concerns [6, 23].

Note that the c4 language is richer than suggested by
this example. In particular, it supports not only after, but
also before and around, with the latter replacing an ex-
isting mainline function. Coady describes this in further
detail for AspectC [6], upon which c4 is based. Fur-
ther note that we aim to reduce developers’ exposure



to c4 as much as possible. In particular, we are ex-
ploring how to support simple annotations of the form
aspect(Name){...}, which can be added inline at
the beginning or end of system functions and are then
automatically extracted and converted into fully-featured
aspects by the c4 compiler.

3.2 Program Analysis
Our initial research goal is to support the syntactic sep-
aration of crosscutting concerns through aspects. On
their own, syntactic separation and automatic weaving
of crosscutting concerns free developers from many low-
level, time-consuming, and error-prone details of main-
taining and applying kernel patches. However, in ad-
dition to supporting syntactic separation of crosscut-
ting concerns, we are also targeting semantic separation
through the detection of interference between concerns.
When two concerns are semantically separate, the execu-
tion of one concern is guaranteed not to change the exe-
cution behavior of the other. For instance, semantically
separate concerns do not mutate shared data structures
either directly or indirectly through a series of function
calls. Semantically separate concerns are of critical im-
portance in large systems such as Linux, in which multi-
ple developers work independently on their own system
extensions. When concerns are semantically separate,
these independent developers need not coordinate their
work, analyze the code of the other developers, or even
be aware that other projects are being developed. By def-
inition, the work of one developer does not interfere with
the other.

In addition to separating multiple “after-the-fact” con-
cerns, it is useful to determine the degree to which a par-
ticular concern is separate from, or, conversely, interferes
with, the mainline code. If a developer can prove, via
an automated program analysis, that their concern does
not interfere with the mainline code, then owners of the
mainline are much more likely to integrate it into their
system. Even if the owners themselves will not integrate
the new concern, users will be less hesitant to down-
load and apply the non-interfering patch. We believe
that analysis of noninterference properties of aspects can
greatly speed technology transfer and integration of new
ideas into Linux (and other open source software).

We have begun to investigate how to design a static
program analysis that will detect whether a new con-
cern interferes with the mainline computation [8] or with
another, existing concern [3]. This analysis makes use
of previous work developed by programming language
and security researchers on detecting and enforcing data
integrity properties via information flow analysis. Our
analysis is designed as a form of type-and-effect system
that separates state into different logical protection do-
mains, with one protection domain for each concern and
one domain for the mainline computation. The analysis

is designed to detect situations, in which code from one
domain mutates state in another, either directly or indi-
rectly through a series of function calls. We are in the
process of formally proving a powerful non-interference
result for our analysis.

While an important step, there still are considerable
challenges to using this analysis in the context of C and
the Linux kernel. A first step for this research will be
to refactor crosscutting concerns in Linux and to analyze
the degree to which various concerns really are separate
from one another and the mainline kernel. This experi-
ence will be crucial in refining the theoretical analysis
and in understanding the specific noninterference prop-
erties that will be useful (and possible) to specify and
enforce. The next step will be to extend c4 with a sys-
tem of annotations that let developers specify their non-
interference and semantic separation requirements. Even
without an analysis, the annotation system will be use-
ful as a systematic form of documentation of developer
intentions and requirements. The last step is to imple-
ment the analysis itself and test it on kernel extensions
in Linux. As we refine and develop our analysis, we in-
tend not only to implement it, but also to formalize it
and prove its correctness. Developing the formal tech-
niques to do this is an important research challenge that
will have a significant impact on the programming lan-
guages community.

4 Related Work
Both IBM and Microsoft recently announced their in-
tentions on using AOSD to improve the evolvability of
complex software systems [14, 25]. Our work differs
from these industry initiatives in three important aspects.
First, we are investigating aspect-oriented programming
within C as opposed to existing efforts on C++, C#, or
Java. Consequently, our work directly applies to a large,
existing code base. Second, we are specifically targeting
the software architecture of a major open source operat-
ing system, which provides us with an opportunity to ad-
dress a real-world problem faced by many organizations.
Finally, we plan to develop formal semantics for reason-
ing about aspect-oriented technology in this domain, and
use this formalization to develop program analysis tools
to further aid systems programmers in general.

AOSD techniques have been previously applied to op-
erating systems. Both Coady et al. [6] and Spinczyk
et al. [20] demonstrate that concerns that crosscut tradi-
tional layers in OS structure can be cleanly defined and
applied using aspects.

Over the last several years, a number of researchers,
including Walker et al. [27], have begun to build seman-
tic foundations for aspect-oriented programming [28, 9,
12, 21, 5]. This foundational, theoretical work provides
a starting point for analyzing the properties of aspect-



oriented programs, developing principled new program-
ming features, and deriving useful program analyses. We
plan to exploit our knowledge of and experience with
these semantic foundations and type-based analyses as
we develop the c4 language.

Recently, programming language researchers have be-
gun to try to understand and analyze interactions between
separate concerns. For instance, Bauer et al. [3] intro-
duces a theoretical language that includes several dif-
ferent ways for combining concerns and a type system
for detecting when concerns apply to the same program
points. In similar work, Douence et al. [10] analyze as-
pects defined by recursion together with parallel and se-
quencing combinators. They develop a number of formal
laws for reasoning about their combinators and an algo-
rithm that is able to detect aspect independence. These
proposals present interesting techniques for detecting in-
terference, but it appears that additional reasoning facili-
ties will be required for analyzing crosscutting concerns
in the Linux kernel, as many of the “separate” concerns
actually reference the same program points. We believe
that more recent work by Dantas et al. [8], which ana-
lyzes aspect code to determine its memory effects, will
help solve this problem. However, all of these proposals
are quite theoretical in nature, and it will take substantial
research to understand how to modify and apply these
ideas in the context of c4 and the Linux kernel.

5 Summary
Our position is that current techniques for evolving op-
erating systems are ineffective, since they solely operate
at the syntactic level. Our work introduces a semantic
patch system based on aspects that offers the ability to
more rapidly and seamlessly move from idea to design
to implementation for new OS features. Aspects’ inher-
ent separation of code from an operating system’s main-
line eases the maintenance of crosscutting concerns, thus
speeding up the technology transfer of a new kernel ex-
tension from early prototype, through multiple design it-
erations, to a mainlined feature of an operating system
that continues to evolve.
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