
CASSYOPIA
Compiler Assisted Systems

Optimization

Mohan Rajagopalan Saumya Debray

Matti Hiltunen Rick Schlichting

Background

• Orthogonal concerns in optimization

• What’s missing

• Symbiotic optimizations

– Optimize whole system: OS + Application

– Use compiler optimization techniques along with OS
design to minimize overheads

– Share information between OS and executable to allow
fine grained control and tuning

• Design concerns

Example: System Call Optimization

Optimize a program’s system call behavior

• Profile system call sequences

• Cluster system calls
– Compiler optimization techniques,

 e.g., code motion, loop unrolling

• Kernel support: multi-call
– Execute multiple calls per boundary crossing

• Implementation
– Optimization pass using PLTO binary rewriting toolkit

Preliminary Results
System Call Optimization

copy

4.1

3.2
2.6

0

2

4

6

80K 925K 2.28M
Input Size

%
Im

po
v.

mpeg_play

8.47

18.17

30

20.17

13.42

0

5

10

15

20

25

30

35

DG1 DG2 DG3 DG4 DG5
Input file

• Power consumption
• Cache misses

Looking Ahead
• Boundary crossing costs

– Distributed systems

• Fine-grain adaptation control
– Power management

– Context-based adaptive scheduling

• Generic optimizations
– Permission checking

– Redundant code elimination

CASSYOPIA
HotOS IX

