USENIX Association

Proceedings of
HotOS I X: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18-21, 2003

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

USENIX Association

Har dware Works, Software Doesn’t:
Enforcing M odularity with Mondriaan Memory Protection

Emmett Witchel and Krste Asanovié
MIT Laboratory for Computer Science, Cambridge, MA 02139

Abstract

Two big problems with operating systems written
in unsafe languages are that they crash too often and
that adding features becomes much more difficult over
time. One cause of both of these problems is the
lack of enforceable memory protection between mod-
ule boundaries. Clear module boundaries make depen-
dencies explicit, resulting in more reliable and maintain-
able code. Mondriaan Memory Protection (MMP) is a
hardware/software design for fine-grained memory pro-
tection that can enforce module boundaries for systems
written in unsafe languages. We present the design of an
MMP-based modular operating system kernel and show
how MMP can be used to provide module isolation while
maintaining performance.

1 Introduction

Operating systems written in unsafe languages are ef-
ficient, but they crash too often. OS crashes are worse
than user software crashes because an OS crash requires
a time consuming reboot and may cause many users to
lose data. The proliferation of embedded devices that
manage non-transient data (like PDAs and digital cam-
eras) translates lack of reliability into personal inconve-
nience. We believe system reliability should be a bigger
goal for OS developers, and we believe that computer ar-
chitects can do more to help OS developers write robust
software.

The largest problem for OS reliability is device
drivers, which according to one study, can have three
to seven times as many bugs as the rest of the kernel [3].
Many operating systems, like Linux, load drivers into
the address space of the running kernel. This makes
calling them efficient because they share the kernel ad-
dress space and run with full kernel privileges. But it
also makes them dangerous, as a single driver bug can
crash the whole system. Drivers are often buggy because
writing a correct driver requires knowledge of poorly
documented features of the kernel programming envi-
ronment, and drivers are often written by device manu-
facturers who are not seasoned kernel developers.

Mondriaan Memory Protection (MMP) is a fine-
grained hardware memory protection scheme that equips
OS developers with a powerful and simple tool to in-
crease reliability [7]. From an OS developer’s perspec-
tive, MMP supersedes the protection part of a page ta-
ble, providing permissions granularity down to single
32-bit words. It does not replace the page table struc-
ture, which is still needed if the system requires virtual
address translation.

In this paper, we describe how MMP can be used to
increase the robustness of an operating system, with-
out compromising its performance. We can enforce the
existing boundaries between dynamically loaded kernel
modules and the core of the kernel, which is currently
only protected by programmer convention. Although
memory corruption is only one possible failure mode of
a poorly behaved device driver (others include leaving
interrupts disabled, breaking the lock discipline, or ex-
cessive resource consumption), it is the most common
and the most difficult to guard against efficiently. Once
boundaries with kernel modules are enforceable, we can
begin dividing the core kernel into protected subcompo-
nents to improve maintainability.

2 Mondriaan Memory Protection

MMP is an efficient, fine-grained memory protection
system that allows word-level protection at word bound-
aries. The MMP architecture was described in detail in
[7], but here we give a brief review.

Figure 1 shows the architectural structure of an MMP
system. A protection domain (PD) contains a map from
address to permissions for the entire address space. The
map is stored in a permissionstable held in kernel mem-
ory. The table is similar to the permissions part of a page
table, but permissions are kept for individual words (32-
bits) in an MMP system. A CPU control register holds
the base address of the active domain’s permissions ta-
ble. MMP can be used in systems with a single virtual
or physical address space, or systems with multiple vir-
tual address spaces in which case a PD lives within one
address space.

The CPU contains a hardware control register which

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

139

140

Virtual

CpPU Address

Permissions
Cache

check

‘ Permissions Table Base‘
|

|
[—

MEMORY

4

refill

Permissions
Table

Figure 1: The major components of the Mondriaan memory
protection system. On a memory reference or instruction exe-
cution, the processor checks a hardware permissions cache. If
the permissions information is not in the cache, it is fetched
from the table in memory.

holds the protection domain ID (PD-ID) within which
the currently running thread executes [5]. The MMP
hardware on the CPU checks every memory access to
see if the active domain has appropriate permissions for
that access. Every instruction fetch is also checked for
execute permissions.

The processor maintains a hardware permissions
cache, the protection lookaside buffer (PLB) [5], to ac-
celerate permission checks. Detailed simulations show
this cache to be effective, resulting in only an 8% in-
crease in memory traffic due to PLB misses even when
fine-grained permissions are used extensively [7]. Per-
missions checks only need to be completed before in-
struction commit and so are not on the critical path of
the processor. We expect a modern out-of-order proces-
sor would hide some or all of the latency of the refer-
ences to the permissions table, reducing the performance
impact of the additional memory references.

Frequent permissions changes might require hardware
support for PLB consistency in multiprocessors. The
form of this support is still an open question.

MMP is backwards compatible with current instruc-
tion sets and binaries. CPUs could be made with TLB
permissions and MMP permissions to allow full binary
compatibility. Or MMP could replace TLB permissions
with support from the device dependent layer of the ker-
nel, and a few trusted applications like the system loader
and the dynamic linker.

We preserve the user/kernel mode distinction, where
kernel mode enables access to privileged control reg-
isters and privileged instructions. Access to privileged
memory areas (like I/O space) can be controlled with
MMP. The CPU encodes whether a domain is user or
kernel mode using the high bit of the PD-ID control reg-
ister (a zero high bit implies a kernel domain). Protec-
tion domain O is used to manage the permissions tables
for other domains and is special in that it can access all
of memory without the mediation of a permissions table.

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

Core Kernel

MMP Supervisor
Memory Allocators
Kernel Modules

Z
it

Protection 0
Domain IDs
(PD-IDs)

_.
»
il

Z

Figure 2: How the kernel address space can be divided into
protection domains. The memory supervisor is in protection
domain 0, and has unfettered access to memory. The bulk of
the kernel is loaded into the first created protection domain
(PD-ID 1). Then it loads other pieces of itself, like the mem-
ory allocators, into other domains. Finally kernel modules are
loaded on demand.

3 UsingMMPintheKernel

In this section, we describe the design of an MMP-
based operating system kernel.

3.1 Memory Supervisor

Figure 2 shows how the kernel address space can be
split into multiple protection domains. The MMP mem-
ory supervisor domain (PD-ID 0) manages the memory
permissions tables and provides an API to control mem-
ory permissions. In this section, we describe the MMP
memory supervisor API by showing how it would be
used during the boot of a modularized kernel.

At system reset, the processor starts running at the re-
set vector in PD-ID 0. The BIOS loads the memory su-
pervisor into physical memory and transfers control to
it, letting it know how much physical memory is in the
machine. Early on, the supervisor establishes a handler
for hardware permission faults.

The MMP hardware checks all processor memory ac-
cesses against the values stored in the current permis-
sions table (except those made by domain 0). The MMP
supervisor software can enforce additional memory us-
age policies because all calls for permissions manipu-
lation are made via the supervisor. The supervisor will
reject requests that violate its policy. Just because the
supervisor exports an API does not mean that all created
domains have permissions to call into it. As we will see,
it is possible to construct a domain which does not have
permission to call into the supervisor, forcing memory
management to happen via the intermediary of the cre-
ating domain.

For example, the supervisor tracks ownership of
memory regions. A domain obtains ownership after
allocating a new memory region from the supervisor,

USENIX Association

USENIX Association

or when another domain grants ownership of a region.
Only the owner of a memory region may revoke permis-
sions, or grant ownership to another domain.

Once initialized, the supervisor creates a new do-
main (PD-ID=1) to hold code and data for the core of
the kernel. Protection domain creation is provided by
the mp_al | oc_PD(user/ ker nel) supervisor call,
which returns a PD-ID. The supervisor does not allow a
user domain to create a kernel domain.

To start the kernel, the supervisor must first load the
boot loader into PD 1. Initially, a PD has no permis-
sions to access memory. In order for the boot loader
to run, it will need execute permission on its code,
read and write permissions on its data, a read-write
stack, and possibly a read-write heap. Setting permis-
sions is done by the mp _set pernm(ptr, |ength,
perm PD-1D) routine. The memory supervisor uses
the mp_set _per mcall to establish proper permissions
for boot loader execution. The supervisor then performs
a cross-domain call (described below) to transfer control
to the boot loader which now runs in a protected kernel
domain (PD-ID=1).

The boot loader wants to load the core kernel, and
so needs to ask the memory supervisor for additional
memory space. The rmp_al | oc(n_byt es) supervi-
sor function allocates a region of memory and returns a
pointer (a variant of nmp_al | oc allows a desired ad-
dress placement to be supplied). The supervisor records
PD-ID 1 as the owner of this memory region. The owner
of aregion can call M _free(ptr) torelease a mem-
ory region back to the supervisor (mp _f r ee can also
take an optional length parameter, allowing partial re-
sources to be reclaimed).

Once the core kernel starts running, it can create child
PDs to hold kernel modules. The core kernel will want
to export permissions for portions of its address space to
its child modules using the nmp_set _per mcall, and it
might also want to pass on ownership of memory regions
to kernel modules, to allow them to manage the permis-
sions of their children. The nmp_memchown(ptr,
| engt h, PD-1D) call passes ownership of a memory
region to the protection domain given by the PD-ID pa-
rameter. Although a kernel module could be allowed to
ask the supervisor for memory regions directly, usually
the core kernel will manage memory usage of its mod-
ules. The core kernel can block kernel modules from
calling the memory supervisor by not exporting call per-
mission on the supervisor entry points to the kernel mod-
ules.

The nmp_set _per mcall supports atransitive
flag which, in addition to exporting permissions, also al-
lows the receiving domain to transitively export permis-
sions. This allows calling domains to either enforce a
policy of only allowing a particular service domain (per-

haps one containing cryptographically verified code) to
implement a function, or allowing a service domain to
subcontract work to other service domains. Transitive
permissions are still distinct from ownership because
only the owner can return memory to domain 0, and a
domain that receives transitive permissions can not re-
voke permissions from a domain higher on the receiving
chain.

Protection domains are created hierarchically, and
they are destroyed hierarchically. The supervisor tracks
the entire protection domain hierarchy, allowing parents
to call mp_f r ee _PD(r ecur si ve) on their children.
If the recursive flag is true, all of the deleted protection
domain’s children are also deleted. Otherwise, they are
reparented to the closest surviving parent remaining in
the tree.

One important special case for sharing data is global
read-only access. MMP supports export of data to all
protection domains read-only. When a piece of mem-
ory is exported globally, the supervisor adds the permis-
sions to all existing permissions tables. It also tracks the
global export in a table so it can add permissions for this
globally exported memory to new protection domains as
they are created.

3.2 Stacksand threads

Code and heap data regions can be associated with a
protection domain, and are typically owned by one do-
main and exported to others. Stack storage must be man-
aged differently, however, because stacks are used by
threads that move between protection domains. In our
MMP OS design, stack storage is owned by the mem-
ory supervisor. To get stack storage, a thread manager in
a protection domain calls mp_al | oc(st ack) . The
st ack flag tells the supervisor that this is a stack seg-
ment, a fact which the supervisor records while main-
taining ownership of the storage.

The memory supervisor only owns and manages the
stack space for each thread. Other details about the
thread, like its control block and the scheduling policy
that govern it, are determined by the kernel or an arbi-
trary thread-managing domain.

Stack permissions are managed by the super-
visor call nmmp_supr set perm(ptr, |ength,
perm exclusive, PD-ID), which is like the
mp_set _per mcall, but the mp_set _per mcall only
works for memory that is owned by the caller. The
mp_supr _set _per mcall requests that the supervisor
make a permissions change on memory that it owns. Of
course, the supervisor range checks the address and re-
fuses action if the request is inappropriate. The excl u-
si ve flag requests that all permissions for other PDs be
revoked.

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

141

142

PD-ID A

call foo

-—

[No permissions

[Execute permissions
Call gate to B

2 Return gate

S

Figure 3: How MMP is used for cross-domain calling. The
arrows indicate a domain crossing, which is handled by hard-
ware. The call gate has the destination PD-ID stored in a spe-
cial record in the MMP protection table. The return gate veri-
fies that it is returning to the last call on the cross-domain call
stack (not pictured).

When a stack segment is allocated, the supervi-
sor records the creating protection domain, and a
stack-ID, which is just the base address of the stack
segment. When a thread is scheduled on a CPU,
the thread manager must make the supervisor call
mrp_set st ack(stack seg, cpuid) to tell it
that a certain stack is now active on a certain CPU. The
supervisor checks that this thread manager has permis-
sions to make this stack segment active. When the super-
visor receives a call to set stack permissions, it checks
that the request is for the active stack.

Although this scheme prevents one thread changing
permissions on another thread’s stack, when multiple
threads run in the same protection domain they can still
potentially access each other’s stack frames. This is a
minor protection violation, as the code in the domain
has already been trusted with the stack frames. But we
can eliminate this violation by adding another hardware
mechanism, discussed in Section 3.3.

3.3 Cross-domain calls

Threads move between protection domains by per-
forming a cross-domain call as shown in Figure 3. The
cross domain call can be initiated by any control flow in-
struction, though it will usually be a standard subroutine
call instruction. The target of the call is marked with a
special permissions value known as a call gate. A call
gate also has the PD-ID of the target protection domain
stored in a special record type in the permissions table.

When call gate permissions are detected on a subrou-
tine call, the hardware atomically pushes the return ad-
dress and the caller’s PD-ID onto a stack that resides in
protected storage. This stack is called the cross-domain
call stack and is implemented with some combination
of an on-chip top-of-stack buffer, backed up by off-chip
protected memory. The architecture then reads the new

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

(callee’s) PD-ID value from the permissions table and
copies this into the CPU’s PD-ID register. It looks up
the protection table base pointer for the new PD-ID, and
stores it in the table base register. At the end of this pro-
cess, instructions are fetched from the context of the new
protection domain.

MMP also uses return gates, which are the duals of
call gates. They are also implemented using standard
instructions and special MMP protection values. A re-
turn gate causes the architecture to pop the cross-domain
call stack, finding the return address and protection do-
main of the last call. The architecture checks the return
address against the return address being used by the re-
turn instruction. If they are different, a fault is generated
which is handled by the memory supervisor. If the re-
turn addresses match, the hardware sets the protection
domain to the PD-ID that was popped off the stack.

Call and return gates provide an efficient mechanism
for mutually distrustful protection domains to safely call
each other’s services, without requiring new instructions
in the ISA. Cross-domain calls are analogous to light-
weight remote procedure calls, though cross-domain
calls do not require copying data for protection, or an
argument stack per domain pair, as LRPC does.

We expect cross-domain calls to be fast because the
amount of on-chip state that needs to be changed is
small. We believe CPU designers will be motivated
to accelerate cross-domain calls to enable the benefits
of protected execution. For example, traditional CPU
microarchitectures flush pipelines on a context switch,
imposing a large overhead. Domain switches can be
made considerably faster by associating PD-ID values
with each instruction in the pipeline, reducing the need
to flush the pipeline.

If the called function needs an activation frame, it
must request permissions for the stack space, and also
make sure that permissions for the frame are exclusive
to the current thread. This is done using the excl u-
si ve flag in a call to mp_supr _set _per m Because
domains take exclusive access to a frame before execut-
ing in the frame, a frame’s permissions do not need to be
revoked at the end of a function for the caller’s safety. A
callee that is concerned about security could overwrite
its activation frame before returning to avoid leaking in-
formation.

Calls to establish a frame will be frequent and could
potentially be expensive. Two special hardware registers
can make the creation of a frame fast, and can make per-
missions to read and write the frame thread-local, clos-
ing the security loophole discussed in Section 3.2.

When the supervisor makes a stack current for a given
CPU, it fills in two registers—frame base fb, and stack
limit sl. The hardware allows read and writes to ad-
dresses between d and fb (stacks grow down so o <

USENIX Association

USENIX Association

fb). The fb value points to the base of the current activa-
tion frame. Its initial value for a given thread’s quantum
is specified (as a parameter to mp_set st ack) when
the thread manager starts the thread. The memory su-
pervisor verifies the initial value of fb to make sure it
is within the stack segment that is being activated. On
a cross-domain call, the current fb is pushed onto the
cross-domain call stack, and the current stack pointer is
made the new fb. The hardware checks that the new fb
value is smaller than the old value. Thus the hardware
insures that the stack grows down, and the memory su-
pervisor insures that it starts and ends in the right place,
so the two registers can only be used to gain permission
to read and write stack memory. The registers become
part of the thread state which must be saved and restored.

3.3.1 Passing arguments

Heap data is owned by a protection domain, SO cross-
domain sharing of heap data is straightforward—the
caller exports permissions to the callee. This is a
lightweight form of argument marshaling that does
not require data copying or even data structure traver-
sal (for many data structures). Domains can set up
shared buffers in advance of the cross-domain call. In
a producer-consumer relationship, the producer would
maintain read-write access on a buffer and flag value,
while the consumer has read-only access on the buffer
and read-write access on the flag. Once the permissions
are established, they do not need to be modified for every
call.

Passing arguments on the stack is more complicated
because a protection domain does not own the stack. To
pass arguments on the stack, a cross-domain call must be
preceded by a call to the supervisor to export any permis-
sions that might be required for the call to work properly,
e.g., giving read-write permissions on a stack structure
whose address is being passed as a parameter.

Calls to export permissions on a stack frame are styl-
ized and so can be highly optimized. For instance many
custom entry points could be provided which take the
current top of the stack as the only parameter. They
would establish read-only permission for a fixed small
number of stack slots by writing directly into the per-
missions tables. Most calls would fit into one of these
patterns, but for those that did not, the dynamic linker
could request the generation of a custom entry point for
a given stack layout.

We can reduce the number of exports for inter-module
calls by hoisting the export out of a loop, reusing stack
slots for different inter-module calls, and not changing
the permissions until right before the call if the call is
unlikely to execute.

3.4 Spaceoverhead of protection domains

For its finest-grained permissions tables, MMP stores
two bits of permissions data per 32-bit word, so the
space cost for the tables is 11—6, or 6.25%. Applications
that use coarse-grained permissions regions can experi-
ence less than 6.25% space overhead, potentially much
less (e.g less than 0.7% for putting each program section
in its own protection region [7]). The space overhead
of the tables is proportional to how densely the address
space is being used, with lower density leading to higher
overhead (just as with page tables).

If multiple protection domains are arranged densely
in the address space (as kernel module code and data are
arranged in Linux), then there is little additional space
cost to dividing domains. Each new domain requires a
root table, which has a fixed cost of 4KB (though they
can be made smaller if need be). The root tables need to
be stored in unmapped kernel memory, but user root ta-
bles can be swapped. Domains that share a permissions
view for much of memory can share permissions tables
below the root level.

4 Adding MMP to Linux

We split the Debian Linux kernel version 2.4.19 into
different domains, putting the core kernel in one domain
and placing each loaded kernel module in its own, sepa-
rate, domain. Code and data exports were derived from
tools that interpreted the symbol information in the ker-
nel modules. Because so little code and data is actually
imported or exported by any module (relative to what is
available in the kernel address space), restricting access
to those symbols results in a large gain in modularity.

For instance, most modules import the kernel function
pri nt k so they can log errors. We treat the unresolved
symbol in the module as a request for permissions to call
the routine. While this works well for code symbols,
data boundaries are less likely to be completely charac-
terized by symbol information because a module might
dereference a pointer from an imported structure, read-
ing memory outside that structure.

We booted the OS on bochs, a complete machine sim-
ulator, and measured domain crossings. Our rough pro-
totype implemented all of MMP in the hardware model
(including table management, which really belongs in
OS code). The OS boot from disk shares many prop-
erties with any disk intensive workload. There were
284,822 protection domain changes in the boot, 97.5%
of which were to or from the IDE driver. About 1 billion
instructions were executed (955,240,000), yielding an
average of 3,353 instructions executed in each domain.
This demonstrates a surprisingly fine-grained interleav-
ing of module execution and underscores the need for

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

143

144

efficient cross-domain calling, justifying hardware sup-
port.

MMP not only enforces memory safety, it enables
performance optimizations. For instance, one reason
the kernel needs a copyin procedure is because it can
not trust the user to put their data in the right spot and
not corrupt kernel data structures. With MMP, we can
change the interface to allow the user to write their data
into kernel space directly, and still protect kernel data
structures.

5 Comparison with other protection
mechanisms

Nooks [6] provides device driver safety using conven-
tional hardware. MMP can reduce the sometimes sub-
stantial performance overheads Nooks endures to run on
current hardware. Also, MMP has many uses in addition
to device driver safety.

Palladium [2] used x86 hardware protection for inter-
module protection both in the kernel and at user level. It
is very difficult to use x86 segmentation to implement
protected shared libraries (Palladium used page-based
protection for shared libraries), and using it in the ker-
nel complicates the programming model for extensions.

Capabilities [4] are a fine-grained protection mecha-
nism that OS designers have used to build big systems
(e.g., IBM’s AS400). Capabilities are special point-
ers that contains both location and protection informa-
tion for a segment. Capabilities have known disadvan-
tages such as difficulty with rights revocation, requiring
tagged memory, and difficulty for two domains to share
a data structure (with embedded capabilities) with dif-
ferent permissions.

Lightweight remote procedure call (LRPC) [1] en-
ables modular boundaries for unsafe languages, using a
software-enforced discipline for protected calling. It al-
lows the partitioning of an OS into different protection
domains whose interactions are protected, but LRPC
achieves this protection by using data marshaling and
copying, a costly process which MMP avoids. Data
copying is inefficient, and imposes a minimum size on
a protection domain so calls to the domain can be amor-
tized.

There are a variety of safe language approaches for
OS extensibility and all of these approaches have com-
mon problems—excessive CPU and memory consump-
tion is common in safe languages or unsafe languages
retrofited with type information. A safe language re-
stricts an implementation to a single language, it ignores
a large base of existent code, the analysis needed to es-
tablish type-safety can be global and thus difficult to
scale, and type-safe languages often need unsafe exten-
sions to manage devices.

HotOS I1X: The 9th Workshop on Hot Topics in Operating Systems

A deeper problem with language-only safety is the
size of the system that must be trusted. For an MMP
system, one must trust the MMP hardware and the MMP
supervisor software. These are likely to be much simpler
and more amenable to verification than a language com-
piler and runtime. This is especially true for optimized
safe-language implementations which employ complex
analyses to improve runtime efficiency.

Modern static analysis and model checking tools can
scale sufficiently to deal with large OS codes. These
systems can find many important bugs without flooding
the user with false positives. But they do suffer from
false negatives, and are therefore compatible with and
benefit from the dynamic checking of an MMP system.

6 Conclusion

MMP allows systems to be extensible, efficient, and
robust, whereas current software-based schemes require
that a designer choose only two of these properties.
Compared with other proposed hardware fine-grained
protection schemes, MMP has the advantage that it is
backwards compatible with existing instruction sets and
existing OS protection models, and so can be introduced
incrementally.

MMP enables the hardware to enforce the inter-
module boundaries already present in the software struc-
ture, helping to address the problem of poor OS stability
due to poorly coded device drivers. MMP supports fur-
ther modularization of the kernel by reducing the over-
head of enforced modularity, which should result in sys-
tems that are more reliable and more maintainable.

References

[1] E.D. Lazowska B.N. Bershad, T.E. Anderson and H.M.
Levy. Lightweight remote procedure call. In SOSP-12,
1989.

[2] T. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating
segmentation and paging protection for safe, efficient and
transparent software extensions. In SOSP-17, 1999.

[3] A.Chou,J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems error. In SOSP-18,
2001.

[4] J.B. Dennis and E. C. Van Horn. Programming semantics
for multiprogrammed computations. CACM, 9(3):143—
155, March 1966.

[5] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architec-
tural support for single address space operating systems.
In ASPLOSV, 1992.

[6] M. Swift, S. Martin, H. M. Levy, and Susan J. Eggers.
Nooks: an architecture for reliable device drivers. In Pro-
ceedings SSGOPS-10, 2002.

[7]1 E. Witchel, J. Cates, and K. Asanovi¢. Mondrian memory
protection. In ASPLOS-X, Oct 2002.

USENIX Association

