
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 91

Using Computers to Diagnose Computer Problems

Joshua A. Redstone, Michael M. Swift, Brian N. Bershad

Department of Computer Science and Engineering
University of Washington, Seattle

(redstone, mikesw, bershad)@cs.washington.edu

Abstract
Although computers continue to improve in speed

and functionality, they remain difficult to use.
Problems frequently occur, and it is hard to find fixes
or workarounds. This paper argues for the importance
and feasibility of building a global-scale automated
problem diagnosis system that captures the natural,
although labor intensive, workflow of system diagnosis
and repair. The system collects problem symptoms from
users’ desktops, rather than requiring users to describe
their problems to primitive search engines,
automatically searches global databases of problem
symptoms and fixes, and also allows ordinary users to
contribute accurate problem reports in a structured
manner.

1 Introduction

Despite continuous advances in hardware and
software technology, computers are still difficult to use.
They often behave in unexpected ways, and it is hard to
find fixes or workarounds for problems encountered.
The typical approach to solving a problem is to describe
the symptoms (e.g. “Word footnotes don’t work”) to the
keyword search interface of a vendor-owned help
database, a small number of public databases, and then
finally a broad “Google”-like search of the entire web.
With luck, the “right” choice of keywords may quickly
produce an article or posting describing the problem,
the cause, and hopefully a resolution. More likely,
though, the user gets back too little, too much, or the
wrong information. He may continue searching, contact
customer support or a message board, or simply give up
and hope the problem doesn’t come up again. This can
be time consuming and frustrating. Moreover, for a
given problem, this diagnostic process is repeated for
each user touched by the problem, leading to massive
global costs as a single problem is diagnosed millions
of times. In contrast, root cause analysis and repair is
done relatively infrequently. Once a user or company
has identified a problem’s symptoms and repair
procedures, he or it posts a solution to some database,

with the intent of sharing the solution with everyone.
Unfortunately, the high global cost of finding the
solution substantially reduces the value of having it in
the first place.

Today, computers scan genetic sequences to
identify the root causes of disease, pinpoint DDOS
attacks on the Internet, and even match up lonely
singles based on personality profiles. Yet, they are
nearly useless when our computers don’t do what we
expect, even when the same problem has occurred a
thousand times before on a thousand different
machines.

This paper presents the simple vision in which
computers diagnose their own problems, leveraging
prior analysis work done by others. In line with this
vision, we propose that problem reports, which today
are unstructured text, follow a structured format and in
particular that they express symptoms and causes in a
machine-readable and machine-testable format. A
structured representation simplifies diagnosis since an
errant client machine can search for and test itself
against symptoms in a global database with high
precision. The structured representation, does, however,
complicate the task of problem reporting. While true,
we believe that finding and fixing a problem for the
first time is where the hard work occurs, and that any
incremental burden posed by representing that process
in a structured format is small.

1.1 Why now and not before?
In the history of computing, there’s never been a

time that the system, and not the user, has been
responsible for closing the gap between system
behavior and user expectations. Why, then, is now the
right time to start building automated, global-scale,
diagnostic services? Consider these enabling factors:

• First, the Internet generates the ultimate

network effect, making it possible for anyone,
anywhere on the planet, to derive value from
the prior experiences (good and bad) of others.
Proxy caches, peer-to-peer file sharing
networks and even user-contributed product
reviews have shown this.

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association92

• Second, although there are hundreds of
millions of machines, there is relatively little
variety in hardware and software.
Consequently, a problem found and fixed on
one machine is likely to be found and fixed in
the same way on another.

• Third, many operating systems support a
generalized form of configuration
management, such as the Windows registry.
This makes it feasible to automatically
determine the configuration of a machine.

• Fourth, standardized user-interfaces facilitate
the mechanical recording of user-interface
events and hence discovery of symptoms.

• Fifth and finally, vendors are making more of
their bug databases public (their paranoia is
mitigated by the economic benefit of avoiding
direct contact with the customer), so there
exist large, high-quality sources of known
problems that can be automatically diagnosed.

 Because of these reasons, an effective diagnosis

solution can be built today, using existing operating
systems and applications.

However, as we will discuss, there is an
opportunity to build an even more effective solution by
extending today’s operating systems and applications so
that a diagnosis engine can observe all state and
behavior of the computer, across all applications. At
first glance, it may seem as though any additional
operating system or application work to support
automated diagnosis creates a new burden, and
therefore development cost, to be borne by software
manufacturers. However, we argue that automated
diagnosis is actually a necessary component of any
system claiming high availability as a feature.
Although availability is typically measured in terms of
uptime – how long since the last crash – this system-
oriented perspective is irrelevant to the user. Instead, a
user perceives availability in terms of goodtime, which
is uptime less the amount of time spent figuring out
why the system isn’t doing what the user expects. As
an example, one of the authors of this paper recently
switched his day-to-day working platform from
Windows XP to another operating system. Although
Windows XP uptime was much improved over its
predecessors, goodtime was not. In contrast, uptimes
on this other operating system are roughly the same as
with Windows XP, but the goodtimes are better. While
we don’t intend to justify our position with a single
anecdote, it should be clear that the broad platform
coverage of most applications is becoming such that
users can easily migrate to those systems where
goodtimes are plentiful.

The goal of this paper is to encourage the systems
community to take seriously the challenge of
automatically diagnosing system and application
problems, and to show that there exists a reasonable

path that gets us from here to there. To be clear, it is a
path that we ourselves have not traveled as we have not
built the system we describe. Consequently, our
assumptions are unchecked, and there may be some
very good reasons why the state of the art in systems
diagnostics is and will remain a glorified version of
grep. But, it seems unlikely.

In the next section, we present additional
background material so that the reader can differentiate
from what has been and what remains to be done. In
Section 3 we sketch out one possible solution to the
problem of automated diagnostics. Finally, in Section 4
we conclude.

2 Background

Software vendors, in order to reduce customer
support costs, are, and have been, motivated to provide
some sort of diagnostic function with their systems.
Most primitively, one can even find occasional bug
reports at the bottom of some thirty-year-old UNIX
man pages. Where the software vendors have left off,
user communities have picked up with their own FAQs
and bulletin boards. Indeed, the theme of “why bad
things happen to good computers” has spawned an
entire book genre dedicated to more goodtime. Below,
we briefly characterize a few existing solutions
according to whether they are manual or automatic.

2.1 Manual diagnosis
Manual problem diagnosis has the user searching

public information sources for a problem report. There
are two common information sources: vendor-
controlled databases (such as [1] or [11]) and
community databases (such as [3] or [16]). Vender-
controlled databases have the advantage of providing
high-quality coverage of a specific class of problems.
However, they are limited in scope and are closed –
contribution is tightly controlled. Limiting contribution
means that database information may be stale and may
contain omissions due to broader corporate
considerations.

Community databases, such as discussion boards
and mailing lists, offer more wide-ranging and up-to-
date information. However, with no standard format
for articles, locating information is especially difficult.
In addition, information may be inaccurate because
there is no quality control mechanism. Posting to these
forums can be effective, but often requires an extended
dialog to describe key symptoms and configuration
details.

Searching is difficult in both kinds of databases
because the search interface is inefficient and error
prone. Most systems offer only keyword search,
although a few natural language systems exist [7].
Successful keyword search requires choosing the
correct terminology, which in turn frequently requires

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 93

detailed technical understanding of the problem.
Further, that terminology may not be the same for all
databases. Natural language systems promise to
improve search quality, but still require sufficiently
detailed understanding of the problem to formulate a
specific request.

Even when a user’s search locates a possible cause
report, the user must manually determine if the system
diagnosed in the report is “phylogenetically similar” to
the system in question. Often, this is impossible, as the
information in the report insufficiently describes the
elements of the reported system. At other times, the
system may be well-described, leaving it to the user to
determine the differences between the systems, and
then if they matter (e.g., difference in BIOS versions).
For example, a printer may not print because a user has
the wrong driver for the printer, or because the driver is
installed in the wrong directory, with each possible
cause described in a separate report. A user who has
the wrong driver installed in the wrong directory will
unprofitably apply the fix from one report without
considering the second.

2.2 Automated diagnosis
An automated diagnosis service shields the user

from the details of determining the source of a problem,
and focuses instead on revealing the solution. Broadly,
there are two types of problems dealt with in automated
systems:

Type I: These problems are those for which the

resolution is to change the system (upgrading an
application, fixing the registry, etc.), and typically
result from some well, or partially, understood bug.

Type II: These problems are those for which the
resolution is to change user behavior (e.g., saving as a
different file format). These problems are either due to
correct but undesired system behavior or to a bug for
which a fix is not known.

Addressing Type I problems are systems such as

WindowsUpdate [14], Windows Baseline Security
Analyzer [10] and virus scanners [5], which scan a
computer and list available software updates or fixes.
However, these solutions lack the ability to diagnose
specific problems (they find all bugs with known fixes
rather than the bug you want fixed), and the first two
may introduce new problems by fixing bugs that are not
experienced. By analogy, one can imagine a general
practitioner who prescribes a lung transplant in order to
cure a patient’s nagging cough.

The Windows Error Reporting System ([12] and
[13]) suggests fixes for Type I problems, but only those
that cause crashes, which occur much less often than
general usability problems. Upon a crash, it alerts
Microsoft, reporting the loaded executables and their
versions. In some cases, Microsoft is able to identify
the bug and provide a fix immediately. Autonomic

Computing [2][9] also addresses only Type I problems
by monitoring system behavior, and then tuning or
repairing the system as appropriate. The operative
analogy with these systems is the mechanic who
replaces your car’s brakes after you’ve run into a wall
because you were distracted trying to figure out how to
turn off the windshield wipers. The problem is with the
wipers, not the brakes.

Agent based approaches such as the Microsoft
Office Assistant [8] target the subset of Type 2
problems that do not include bugs. Agents passively
monitor user activity and actively offer suggestions
based on observed behavior. Such systems are a step
in the right direction, but we believe that greater depth,
coverage, and specificity are required.

To summarize, existing manual and automated
tools provide only limited assistance in diagnosis.
Manual tools can diagnosis a wide range of problems
but imprecisely and at high cost. Automated tools
provide low-cost assistance, but only cover a limited
range of problems and do not provide targeted
assistance for particular problems.

3 Automated Problem Diagnosis

An automatic problem diagnosis system has three
components. The first component captures aspects of
the computer’s state and behavior necessary to
characterize the problem. This includes the symptoms
and information such as the installed applications and
their versions. The second component matches this
information against problem reports to identify the
report(s) that best diagnose the problem. Finally, the
third component produces new problem reports as new
problems are discovered. This section discusses issues
in the design of each component.

3.1 Observing Symptoms
The flexibility of a diagnosis system to handle

different problems depends on its ability to observe the
problem. This is a challenging task. To collect the
information necessary to perform a diagnosis, all
relevant information must be visible to the diagnosis
engine. For example, diagnosing a bug in which a
missing library causes an application to display an error
message when launched involves observing the error
message and that the library is missing. If the tool
cannot observe the error message or detect the library’s
existence, it cannot diagnosis this particular problem.
In addition, state and behavior should be observable at
the correct level of abstraction for robust diagnosis. For
example, observing that the ‘OK’ button was clicked
may be more useful than observing that a mouse click
occurred at pixel (x,y). Translation between abstraction
levels is possible, but may be difficult to accomplish in
a robust manner.

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association94

Computers today already expose a wide variety of
state and behavioral information, allowing for the
diagnosis of a wide range of problems. However, gaps
exist, and ultimately, robust diagnosis will require
changing systems and applications to reveal more
information. The following paragraphs discuss the
information available today. We divide the discussion
of observable state and behavior information into three
categories depending on the agent: the user,
applications, or the operating system.

User behavior is revealed in terms of the user’s
input to the system. Since input is an OS service, it is
readily available for observation. Most systems allow
capture of mouse and keyboard events. Many
applications use standard user-interface toolkits, which
interact with system resources in an easily observable
way. For these applications, events such as menu and
dialog box activity are visible. However, observing user
behavior in applications that manage their own user
interface requires their cooperation in some form.

Applications serendipitously expose a fair amount
of behavior and state by virtue of their interaction with
the operating system (and thus, hardware). For
example, it is straightforward to capture calls to system
APIs, including registry (on Windows) and file system
accesses. However, applications will not reveal much
internal information without modification. Many
applications support a debug interface, usually used
during development, or export an API for extensibility.
Exploiting this functionality may offer a low cost path
to accessing more internal application state and
behavior.

The operating system exposes many aspects of
state and behavior already for the purpose of system
management, through performance monitors and event
logs. Furthermore, useful configuration information is
available from the file system and registry (in
Windows) or /etc (in *nix). In addition, the OS exports
a rich programming interface for discovering and
manipulating system state. Therefore, tools can
adequately capture OS behavior and configuration
today.

Diagnosis fundamentally involves gathering
information, which raises privacy concerns. Users today
explicitly choose which information to share with
support forums or help desks, and the diagnosis system
should provide similar options. If the diagnosis process
involves an untrusted computer, then system state must
be filtered to avoid disclosing sensitive data. Or, the
diagnosis process can be performed only on trusted
computers (e.g., by downloading problem databases.)

Examples

 We briefly give three examples to show how
an automated diagnosis system might detect that a user
is having problems. The first example shows what can
be done using today’s system and application

infrastructure. The second illustrates why changes to
infrastructure may be required. Finally, the third
problem is representative of a class of problems which
we believe are not detectable using automatic means.

Problem 1: Quicktime is not installed. When a
user clicks on a Quicktime URL, she expects a
movie to play. Using today’s system and
application interfaces, a diagnostic service could
observe the HTTP request for a URL ending in
.mov, and a subsequent dialog box containing the
message that there is no application to display this
object. This is sufficient to scan the problem
reports database and determine that Quicktime
needs to be installed.

Problem 2: Page doesn’t render properly. A
more difficult problem might be that an HTML
page won’t render properly. Suppose that the
particular cause is that too many display elements
exceeds the browser’s internal limits. For a
diagnosis tool to recognize this, the browser would
have to export sufficient information on its internal
state and dynamic document contents.

Problem 3. Page doesn’t print properly. Finally,
diagnosing some problems, such as those that
reveal themselves externally to the system, will be
difficult without significant additional
infrastructure. Consider a bug in which a
document prints incorrectly. The information
necessary to diagnose the problem, namely the
printed document, is not visible to the computer.
Even if the computer could observe the document,
it may be challenging to characterize in a general
way the qualities of the document that make it
unsatisfactory. It may be necessary to involve the
user here.

3.2 A Structured Database
The second element in a diagnosis system is a

mechanism to search problem reports for those that
match the observed state and behavior. We believe the
way to accomplish this is to require that problem
reports be written in a structured, machine-readable
format, such as XML. XML provides a semi-structured
format for reports with variable levels of detail, and a
rich query language for matching symptoms to reports
[4]. Future advances in natural language techniques
may allow more flexible problem report formats.
Automated capture of symptoms for both searching and
reporting greatly increases the accuracy of searches
compared to today’s manual searches.

Searching the database, at the conceptual level,
consists of comparing each problem report to the state
and symptoms of the system. The reports can then be
ranked according to how well they match.

HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 95

3.3 Generating New Reports
The third and final element of the system

generates new problem reports. While automated
diagnosis is useful even if it can only recognize a few
problems, the technique works best when leveraging the
experiences of all who experience problems. The key is
to make problem reporting as simple as possible.
Manual entry of reports is always an option, but we
believe that the technology of the other diagnosis
components can aid this process. For example, when a
user attempts to diagnose a problem and no problem
report is found, the state and behavior information
collected to aid in diagnosis can be used to construct a
new problem report. There are similar privacy concerns
when generating new reports as when collecting system
state for diagnosis. The ultimate goal is to construct
new reports without any user intervention at all. To
distinguish the quality of reports, since they come from
many sources, a community rating system, such as used
at eBay.com [6], can be used.

3.4 Summary
Each of the three components of problem

diagnosis described here has been inspired by
counterpart work in other fields, which provides
comfort that the ultimate solution is achievable. The
TIGR [18] and NCBI [15] genome database projects
aggregate gene data from many researchers, and
leverage a standard data format to allow users to easily
benefit from every researcher’s contributions. The
SDSS SkyView astronomy database [17] provides
advanced online query access to astronomical data.
The intelligent query interface provides efficient access
to a large amount of data. eBay.com [6] has a feedback
system to judge the quality of data from uncontrolled
sources. Finally, the Windows Error Reporting Service
[12] relies on technology to automatically construct
new problem reports when users experience a crash
without input from the user.

4 Conclusion

Despite continuous advances in hardware and
software, computers are still difficult to use and users
frequently have problems. Computer usability is
essentially an availability issue: if the user can’t get
their job done, it is irrelevant that the computer is
running. The correct metric of computer availability
therefore is not the traditional uptime metric, but
instead is the user’s ability to get work done
(goodtime).

This paper argues that an important way to
increase goodtime is to decrease the time spent
diagnosing problems by automating the diagnosis
process. When the user encounters a problem, the
computer should examine the state and behavior of the
machine, search problem databases for a matching

problem report, and present the diagnosis to the user.
Ideally, this process should occur without any
interaction from the user.

We believe that automating problem diagnosis is
possible for a large class of problems with today’s
operating systems and applications, and can only
improve with further operating system and application
support. The challenges in building an automated
diagnosis system are capturing relevant state and
behavior, matching to problem reports, and creating
new problem reports as new problems arise. Capturing
state and behavior is possible because critical systems
and applications already have interfaces and logs for
determining the state and activities of a system.
However, some problems are undetectable with the
information available from applications and the
operating system today. To perform robust detection,
we need new interfaces in systems to allow applications
to expose their internal state and behavior. Performing
matching automatically is possible if we structure
problem reports in a machine-readable format.

The state of system and application support for
automated problem diagnosis today is not unlike the
state of support for system auditing and event recording
in early operating systems which were extraordinarily
difficult to monitor. Then, to enable even the simplest
of management functionality, applications and the
operating had to change to expose their behavior to
monitoring services via mechanisms such as SNMP.
Similarly, automated problem diagnosis also requires
application and OS modification. As with those earlier
manageability overhauls, we believe that small
investments in the way we build applications and
operating systems will yield big returns.

5 References

[1] Apple Corporation. AppleCare Knowledge Base,
http://kbase.info.apple.com.

[2] G. Banga. Auto-diagnosis of Field Problems in an
Appliance Operating System, in Proceedings of the
USENIX Technical Conference, June 2000.

[3] BugNet. BugNet, http://www.bugnet.com.

[4] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J.
Sim6on and M. Stefanescu. XQuery 1.0: An XML
Query Language, W3C Consortium,
http://www.w3.org/TR/xquery.

[5] D. Chess. Virus Verification and Removal Tools
and Techniques, Virus Bulletin, November 1991.

[6] EBay Corporation. Feedback Profiles,
http://www.ebay.com.

[7] D. Heckerman and E. Horvitz. Inferring
Informational Goals from Free-Text Queries: A
Bayesian Approach, in Proceedings of the

HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association96

Fourteenth Conference on Uncertainty in AI, July
1998.

[8] E. Horvitz, J. Breese, D. Heckerman, D. Hovel,
and K. Rommelse. The Lumiere Project: Bayesian
User Modeling for Inferring the Goals and Needs
of Software Users, in Proceedings of the
Fourteenth Conference on Uncertainty in AI, July
1998.

[9] IBM Corporation. Autonomic Computing,
http://www.research.ibm.com/autonomic.

[10] Microsoft Corporation. Microsoft Baseline Security
Analyzer,
http://www.microsoft.com/technet/security/tools/T
ools/MBSAhome.asp.

[11] Microsoft Corporation. Microsoft Knowledge Base,
http://support.microsoft.com.

[12] Microsoft Corporation. Windows Error Reporting,
http://msdn.microsoft.com/library/en-
us/debug/base/windows_error_reporting.asp.

[13] Microsoft Corporation. Windows Online Crash
Analysis,
http://oca.microsoft.com/en/Welcome.asp.

[14] Microsoft Corporation. Windows Update,
http://www.windowsupdate.com.

[15] J. Ostell and J. Kans. The NCBI data model.
Methods of Biochemical Analysis, Vol. 39, July
1998.

[16] Redhat Corporation. Redhat Support Forums,
http://www.redhat.com/support/forums.

[17] A. Szalay, J. Gray, A. Thakar, P. Kunszt, T. Malik,
J. Raddick, C. Stoughton, and J. vandenBerg. The
SDSS SkyServer – Public Access to the Sloan
Digital Sky Server Data, in Proceedings of ACM
SIGMOD, June 2002.

[18] TIGR. The Institute for Genomic Research.
http://www.tigr.org.

