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Abstract

Execution of a program almost always involves multi-
ple address spaces, possibly across separate machines.
Here, an approach to reducing such costs using compiler
optimization techniques is presented. This paper elabo-
rates on the overall vision, and as a concrete example,
describes how this compiler assisted approach can be ap-
plied to the optimization of system call performance on
a single host. Preliminary results suggest that this ap-
proach has the potential to improve performance signifi-
cantly depending on the program’s system call behavior.

1 Introduction

Execution of a program almost always involves multi-
ple address spaces, whether it executes on a standalone
system such as a desktop or a PDA or across multiple
machines such as a client-server program or a program
based on the Web or the Grid. On a standalone system,
user-level address spaces—i.e., processes—request ser-
vices from the kernel address space using system calls
and potentially interact with other user-space processes
or system daemons. Programs that span machines are by
definition composed of multiple processes, which also
interact with kernels, e.g., to exchange messages. Ad-
dress spaces play a valuable role as protection bound-
aries, and typically represent units of independent de-
velopment, compilation, and linking. Largely for these
reasons, crossing address spaces—even on the same
machine—has considerable execution cost, typically or-
ders of magnitude higher than the cost of a procedure call
[11, 12].

Here, we describe an approach to reducing this cost—
sometimes dramatically—using compiler optimization
techniques. Unlike traditional uses of such tech-
niques that are confined to optimizing within procedures
(intra-procedural optimization), across procedures (inter-
procedural optimization), or across compilation units
(whole-program optimization), our approach focuses on
applying these techniques across address spaces on the
same or different machines while preserving the desir-

able features of separate address spaces. The specific fo-
cus is on profiling-based optimization where the address
space crossing behavior of a component (e.g., the system
calls made by a process) is profiled and then optimized
by reducing the number of crossings or the cost of each
crossing. This compiler assisted approach to system op-
timization is being realized in a system called Cassyopia.

This paper elaborates on this overall vision. We first
highlight its application in one context, that of optimiz-
ing traditional system call performance on a single host.
This work complements existing techniques for system
call optimization [5, 6, 11, 14, 15, 16], which focus on
optimizing calls in isolation rather than as collections of
multiple calls as done here. We then briefly discuss other
areas in which these ideas could be applied.

2 Case Study: System Call Clustering

Overview. As an application of the general approach
described above, we describe system call clustering, a
profile-directed approach to optimizing a program’s sys-
tem call behavior. In this approach, execution profiles
are used to identify groups of systems calls that can
be replaced by a single call implementing their com-
bined functionality, thereby reducing the number of ker-
nel boundary crossings. A key aspect of the approach is
that the optimized system calls need not be consecutive
statements in the program or even within the same proce-
dure. Rather, we exploit correctness preserving compiler
transformations such as code motion, function inlining,
and loop unrolling to maximize the number and size of
the clusters that can be optimized. The single combined
system call is then constructed using a new multi-call
mechanism that is implemented using kernel extension
facilities like those described in [3, 4, 7, 8, 15, 20]. We
also introduce an extension to the basic technique called
looped multi-calls, and illustrate the approach using a
simple copy program. Our approach goes beyond earlier
work on batching system calls to improve performance
[2, 6] by its use of compiler-based techniques to create
optimization opportunities and by its orientation towards
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optimizing a program’s entire system call behavior in a
holistic manner.

Clustering mechanisms. We first describe the mech-
anisms used to realize system call clustering in a tradi-
tionally structured operating system. The goal, in ad-
dition to reducing boundary crossing costs, is to reduce
the number of boundary crossings required. Specifically,
we want to extend the kernel to allow the execution of a
sequence of system calls in a single boundary crossing.
The new mechanism must not compromise protection,
transparency or portability, significant advantages pro-
vided by the existing system call mechanism. We now
look at one such mechanism, the multi-call [17].

A multi-call is a mechanism that allows multiple system
calls to be performed on a single kernel crossing, thereby
reducing the overall execution overhead. Multi-calls can
be implemented as a kernel level stub that executes a
sequence of system calls. At the application level, the
multi-call interface resembles a standard system call and
uses the same mechanism to perform the kernel bound-
ary crossing, thereby retaining the desirable features of
the system call abstraction. An ordered list of system
calls to be executed is passed as a parameter to the multi-
call. Each system call in the list is described by its system
call number and parameters. Error behavior is preserved
by generating the stub so that it returns control to the ap-
plication level if an error is detected during execution of
any of the constituent calls. Also, since the multi-call
stub uses the original system call handlers, permissions
and parameters are checked as in the original system call.

Modifications to a program to replace a sequence of sys-
tem calls by a multi-call are conceptually simple and can
be done using a compiler without requiring changes to
any other system component (e.g. the linker).

Profiling. Given this mechanism, the issue becomes
one of identifying optimization opportunities in the pro-
gram, both in the sense of identifying sequences of
calls that can be replaced by a multi-call and identify-
ing correctness-preserving program transformations that
can be used to create such sequences. Profiling does this
by characterizing the dynamic system call behavior of a
program on a given set of inputs. Operating system ker-
nels often have utilities for generating such traces (e.g.,
strace in Linux), or they can be obtained by instru-
menting kernel entry points to write to a log file.

A system call graph is then constructed to provide a
graphical representation of a collection of such traces for
a given program. An example of such a graph for a sim-
ple copy program is shown in figure 1.c; the code for this
program is in figure 1.a, while 1.b shows the control flow.
Each node in this graph represents a system call with a

given set of arguments. Consecutive system calls in the
trace appear as nodes connected by directed edges indi-
cating the order. The weight of each edge indicates the
number of times the sequence appears. This graph forms
the basis for compile-time transformations for grouping
system calls. The general idea is to find frequently exe-
cuted sequences of calls in the system call graph; if the
corresponding system calls are not syntactically adjacent
in the program source, we attempt to restructure the pro-
gram code so as to make them adjacent, as described be-
low.

Applying compiler optimizations. The fact that two
system calls appear as a sequence in the graph does not,
by itself, imply that the system calls can be grouped to-
gether. This is because even if two system calls fol-
low each other in the trace, the system calls in the pro-
gram code may be separated by arbitrary user code that
does not include system calls. Replacing these calls by
a multi-call would require moving the intervening code
into the multi-call, which may compromise safety. In-
stead, we use compiler techniques like function inlining,
code motion, and loop unrolling to transform the pro-
gram and create sequences of system calls that can be op-
timized. The use of these standard and well-understood
optimization techniques ensures that the transformations
are correctness preserving and that the optimized pro-
gram behaves the same as the original [1]. This also
allows tools such as those for checking program safety
to be used on the optimized program in the same way
as they would for the original. Although code rear-
rangement is a common compiler transformation, to our
knowledge it has not been used to optimize system calls
as done here.

A number of program transformations can be used to
rearrange the statements in a program to allow system
call grouping without affecting the observable behavior
of the program. A simple example involves interchang-
ing independent statements. Two statements are said to
be independent if neither one reads from or writes to any
variable that may be written to by the other. Two adjacent
statements that are independent and have no externally
visible side-effects may be interchanged without affect-
ing a program’s observable behavior. This transforma-
tion can be used to move two system calls in a program
closer to each other, so as to allow them to be grouped
into a multi-call. Note that such system calls may actu-
ally start out in different procedures, but can be brought
together (and hence, optimized) using techniques such as
function inlining.

Another useful transformation is loop unrolling. In the
control flow graph (figure 1.b), the if statement in ba-
sic block B2 prevents the read and the write system
calls from being grouped together. Programs like FTP,
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#include <stdio.h>
#include <fcntl.h>

#define N 4096

void main(int argc, char* argv[])
{

int inp, out, n;
char buff[N];

inp = open(argv[1],O_RDONLY);
out = creat(argv[2],0666);

while ((n = read(inp,&buff,N)) > 0) {
write(out,&buff,n);

}
}

(a) Source code

B3
write(out, &buff, 4096)

B4
return

B0

B1

B2

inp = open(argv[1], ... )

out = creat(argv[2], ... )

if (n <= 0) goto B4

n = read(inp, &buff, 4096)

(b) Control flow graph

close(4,..)

Loader system calls

1

1

1

close(3,...)

open(out,...)

open(inp,...)

557557

read(3,...)

write(4,...)

1

(c) System call graph

Figure 1: Copy program

encryption programs, and compression programs (e.g.,
gzip and pzip) exhibit similar control dependencies. In
cases like this where the dependency appears within a
loop, loop unrolling can sometimes be used to eliminate
the dependency. In the case of the copy program in fig-
ure 1, for example, unrolling the loop once and combin-
ing the footer of one iteration with the header of the next
iteration results in the code shown below, with adjacent
system calls within the loop that are now candidates for
the multi-call optimization:

n = read(inp, buff, N);
while (n � � ) �

write(out, buff, n);
n = read(inp, buff, N);�

Looped multi-calls. The looped multi-call is a variant
of the basic multi-call mechanism that repeats the multi-
call sequence a specific number of times. It is appli-
cable in the situation where, after other transformations
have been applied, the entire body of a loop consists of
a single multi-call. In this case, the number of bound-
ary crossings can be reduced to one rather than one per
iteration by moving the loop into the kernel. For exam-
ple, in the copy program, the entire loop can be moved
into the kernel using the looped multi-call construct once
the write-read sequence is replaced by a multi-call. This
optimization is actually a simple extension of traditional
loop invariant motion [1] applied across address spaces.

Experimental results. A number of experiments have
been performed to identify both the potential and actual
benefits of this approach. All tests were run on a Pentium
II-266 Mhz laptop running Linux 2.4.4-2.

As a baseline, we first measured the cost of a system
call versus a procedure call. Table 1 gives the results of

Entry Exit
System Call 140 (173-33) 189 (222-33)

Procedure Call 3 (36-33) 4 (37-33)

Table 1: CPU cycles for entry and exit

these experiments; these results were obtained using the
rdtscl call, which reads the lower half of the 64 bit
hardware counter Read Time Stamp Counter, RDTSC,
provided on Intel Pentium processors. These results in-
dicate that clustering even two system calls and replacing
them with a multi-call can result in savings of over 300
cycles every time the pair of system calls is executed.

Table 2 gives the results of applying system call cluster-
ing using both the multi-call and the looped multi-call
to the copy program shown in figure 1. To do this, the
multi-call or looped multi-call was assigned system call
number 240 and added as a loadable kernel module. The
numbers reported in table 2 were calculated by taking the
average of 10 runs on files of 3 sizes ranging from a small
80K file to large files with size around 2MB. The block
was chosen as 4096 bytes since it was the page size and
hence, the optimal block size for both the optimized and
unoptimized versions of the copy program. The max-
imum benefit in this example is for small and medium
file sizes, since the cost of disk and memory operations
dominates for larger files.

The second example program is the popular mpeg play
video software decoder [18]. The effects of optimizing
this program using our approach are shown in table 3.
Although several candidate system call sequences were
revealed by profiling, only one was optimized since the
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File Size Original Multi-call Looped Multi-Call
Cycles ( � � � ) Cycles ( � � � ) % Savings Cycles ( � � � ) % Savings

80K 0.3400 0.3264 4% 0.3185 6.3%
925K 4.371 4.235 3.1% 4.028 7.8%
2.28M 10.93 10.65 2.6% 10.37 5.2%

Table 2: Optimization of a copy program with block size of 4096

others existed partially or completely in the X-windows
libraries used by the player. The program was executed
using different input files taken from [13] with sizes
varying from 4.7MB to 15MB. Overall, our approach
shows a more dramatic effect than for the copy program,
largely because the system calls here are not I/O bound
as was the case for copy. In addition to the savings in
CPU cycles, this optimization also improved the frame-
rate and performance of mpeg play. Specifically, there
was an average 25% improvement in the frame rate and
20% reduction in execution time across all file sizes.

More details on these and other examples can be found
in [17].

3 Other Compiler Assisted Techniques

The multi-call mechanism can be extended further to in-
clude code other than the system calls, error checking,
and loops in the multi-call. Specifically, we can extend
the basic code-motion transformations to identify a clus-
terable region, possibly containing arbitrary code, that
can then be added to the body of a multi-call. Optimiza-
tion techniques like dead-code elimination, loop invari-
ant elimination, redundancy elimination, and constant
propagation can then be applied to optimize the program.
For example, the data transformation code in programs
such as compression or multimedia encoding/decoding
can be included in the multi-call.

Another avenue of optimization is to replace general
purpose code in the kernel by compiler-generated case-
specific code in user-space. Examples of such general
code are the register saves and restores executed by the
kernel before and after each system call. Since the kernel
does not know which registers are actually used by the
application process, it must save and restore all of them.
This can be quite expensive on processors with a large
number of registers. However, the compiler has this in-
formation, and it can therefore generate specialized user-
space code for saving and restoring registers. Simula-
tions using this strategy for a 3 parameter read system
call on the Intel StrongARM processor show up to 20%
reduction in the number of cycles required to enter the
kernel. Other such examples include the general permis-

sion checking performed by each system call. Note that
both of the above extensions require use of a trusted com-
piler for safety reasons.

The profiling and compiler-based optimization can also
be used to enable controlled information sharing be-
tween address spaces. Traditionally, components in dif-
ferent address spaces optimize their internal behavior not
knowing what type of interactions will be received from
other address spaces. For example, the operating sys-
tem conserves battery power by switching hardware de-
vices such as the CPU, display, hard disk, and wireless
cards into power-saving modes based on a period of in-
activity. These policies are generally based on statisti-
cal models of application behavior that attempt to pre-
dict future (in)activity based on patterns of past activ-
ity. Because of their stochastic nature, they can be quite
inaccurate for individual applications, and result in sig-
nificant performance overheads [21, 22, 23]. However,
by carefully exposing some of the components internal
state to other address spaces using a translucent bound-
ary API, each address space can optimize its behavior
to better match the requirements of other system compo-
nents, and hence aim for a global optimum. The profil-
ing and compiler techniques can be used to collect and
generate the information at the application’s translucent
boundary API to the kernel. The same approach can be
used for compiler assisted scheduling, where an adap-
tive scheduler can fine-tune the scheduling policy based
on the processes running in the system and their require-
ments. The compiler could place ”yield” points within
the body of the program to indicate schedulable regions
and changes in requirements. Conversely, if the kernel
exposes changes in the state of an existing resource, e.g.,
a reduction in CPU speed to conserve power, the applica-
tion process may be able to adapt its internal algorithms
[9] to degrade the service gracefully while still satisfying
user requirements.

Finally, note that the same principles can be applied to
any address space crossing, including distributed pro-
grams where the “boundary crossing” cost involving net-
work communication may have a delay of tens or hun-
dreds of milliseconds. In particular, clustering multiple
remote procedure calls (or remote method invocations
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CPU Cycles ( � � � ) %
Size Original Optimized Savings
4.7M 23.75 21.74 8.47%
9.5M 63.65 52.09 18.17%
9.5M 31.00 21.70 30.00%
10.3M 51.51 41.12 20.17%
15.1M 60.18 52.10 13.42%

Table 3: Optimization of mpeg play using multi-calls

in distributed object systems such as CORBA and Java
RMI) can lead to significant savings [25]. Furthermore,
more general code movement techniques such as moving
client code to the server or server code to the client when
appropriate can also be used [24]. Note that the object
migration techniques used in systems such as Emerald
[10] have the same goal, but without the systematic sup-
port provided by our profiling and compiler techniques.

4 Concluding Remarks

Our current work is aimed at integrating these optimiza-
tions into the PLTO binary rewriting tool [19], and then
using the tool to test further the effectiveness of the ap-
proach. A number of potential targets have been iden-
tified ranging from utility programs like gzip and pzip,
to web servers and database applications. We also in-
tend to explore the applicability of these techniques for
small mobile devices. Independent of the savings in CPU
cycles, we believe our approach will yield significant en-
ergy savings in this context, greater in fact than what the
reduction in CPU cycles would imply.
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