
USENIX Association

Proceedings of
HotOS IX: The 9th Workshop on
Hot Topics in Operating Systems

Lihue, Hawaii, USA
May 18–21, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 169

FAB: enterprise storage systems on a shoestring

Svend Frølund, Arif Merchant, Yasushi Saito, Susan Spence and Alistair Veitch
Storage Systems Department, Hewlett-Packard Laboratories, Palo Alto, CA

�frolund,arif,ysaito,suspence,aveitch�@hpl.hp.com

Abstract—A Federated Array of Bricks (FAB) is a log-
ical disk system that provides the reliability and perfor-
mance of enterprise-class disk arrays, at a fraction of the
cost and with better scalability. The unit of deployment
in FAB is a brick, a small rack-mounted storage appli-
ance built from commodity components including disks, a
CPU, NVRAM, and network cards. Bricks federate them-
selves in a completely decentralized manner to provide
users with a set of logical volumes. This paper motivates
FAB and introduces our data replication algorithm based
on majority-voting. We argue that majority voting is prac-
tical for ultra-reliable, high-throughput storage systems
like FAB, and present several techniques that improve both
the performance and space overhead of our protocol.

1 Introduction

Disk arrays are today’s standard solution for enterprise-
class storage systems. The key requirement that separates
disk arrays from consumer-class storage systems is their
absolute reliability: a disk array must never lose data or
stop serving data, under any circumstances short of com-
plete disaster. To fulfill this requirement, disk arrays are
constructed from customized, very reliable, hot swappable
hardware components. Designing and building the hard-
ware components is time-consuming and expensive, and
this, coupled with relatively low manufacturing volumes,
is a major factor in the high price of storage systems—
high-end arrays retail for many millions of dollars.

Another cost factor, and problem for customers, is the lack
of scalability of a single system. There is a high up-front
cost for even a minimally configured array, and a single
system is limited in both capacity and throughput. Many
customers exceed these limits, resulting in poor perfor-
mance or a requirement to purchasemultiple systems, both
of which increase management costs. The lack of scala-
bility forces manufacturers to build multiple products, or
even entire product lines, each targetted at different sys-
tem scales. For example, Hewlett-Packard sells three dif-
ferent array lines, each of which effectively multiplies the
engineering effort required — for hardware and firmware
development, for integration and testing, etc, costs which
are reflected in the price paid for each system.

A Federated Array of Bricks (FAB) is a low-cost alterna-
tive to disk arrays, and is designed to be scalable from

very small to very large systems. FAB achieves this by
composing together storage bricks, where each brick is
a small rack-mounted storage appliance built from com-
modity components including disks, a CPU, NVRAM, and
network cards. FAB systems cost much less than disk ar-
rays to manufacture and develop, due to the economies
of scale inherent in volume production, and because FAB
can replace entire array product lines (amortizing devel-
opment costs). Because of these factors, we anticipate that
a FAB system can be built for far less than the equiva-
lent high-end system. FAB provides comparable reliabil-
ity, achieved through replication: we store the same disk
block on multiple bricks, and we create redundant paths
between all components of the system. FAB performance
scales by completely distributing all functionality (no cen-
tralized bottlenecks) across the set of available bricks.

1.1 FAB: challenges and overview of solutions

We have identified the following key challenges to build-
ing a large, completely distributed storage system:

Failure tolerance: FAB is built from commodity hard-
ware, which has empirically been found to be less
reliable than the hardware used for enterprise sys-
tems [3, 2]. Every component—disks, bricks, networks
can and will fail. FAB must seamlessly handle fail-
ures without data loss or delays in response to client
requests.

Single-copy consistency: We must ensure that a repli-
cated disk block logically looks like a single, highly
available block to the client, even though there is no
centralized software that oversees the I/O activities of
the entire system.

Asynchronous coordination: We cannot rely on disks
and operating systems to always act in a timely
manner—e.g., an I/O request to a busy disk is known to
sometimes take more than 5 seconds to complete (i.e.,
stuttering failures). Thus, we must coordinate replicas
without any assumptions about their speed or network
connectivity.

Hardware heterogeneity: As disk and CPU technologies
evolve over time, the design of bricks will also evolve.
We must let customers deploy different types of bricks



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association170

incrementally as their demand grows. FAB must assign
resources to volumes in a way that maximizes overall
performance and reliability.

FAB uses a quorum-based replication scheme, as de-
scribed in Section 3, to address the first three challenges.
In FAB, a “read” or “write” request completes when a ma-
jority of the replicas are functional. We recover from fail-
ures lazily, repairing the replicas during the next “read” re-
quest without any lock-step synchronization. Our protocol
does not rely on failure detection—it just ignores dysfunc-
tional components. It tolerates non-Byzantine failures, in-
cluding network partitioning and stuttering failures. FAB
uses dynamic load balancing and background reconfigura-
tion, as discussed further in Section 4, to address the fourth
challenge.

1.2 Related work

The idea of building a distributed logical disk from a
decentralized collection of smaller components was pio-
neered by DataMesh [13] and Petal [10]. FAB extends
Petal’s ideas with better replication, volume layout, and
load balancing algorithms. IBM’s IceCube [8] builds in-
novative hardware for a FAB-like composable storage sys-
tem, but we do not know their software structure yet.

Many high-throughput data systems, including Petal and
most relational database systems, use some form of
primary-backup replication. They fail to solve the chal-
lenges outlined in the previous section. In these systems,
a failure of the primary renders its data unavailable un-
til a new primary is elected. The actual fail-over time in
these systems can be quite substantial. Having too short
a fail-over time increases the chances of electing a new
primary before the old primary has actually failed, conse-
quences of which range from severe performance degra-
dation (as in some group membership protocols) to out-
right data corruption (as in a naı̈ve timeout-based failure
detection scheme). Thus, in practice, these systems must
conservatively choose a large fail-over period, often longer
than 30 seconds, which actually causes the clients to time
out.

The goal of [1] is to allow clients of a storage-area network
to directly execute RAID encodings across distributed
storage devices. This algorithm relies on the ability of
clients to accurately detect the failure of storage devices.
Moreover, the algorithm in [1] can result in data loss when
certain combinations of client and device failures occur. In
contrast, our algorithm can tolerate the simultaneous crash
of all bricks, and it can make progress whenever a majority
recover and are able to communicate.

Numerous replication protocols use majority voting. The
protocol by Thomas [12] is similar to ours in that it uses
timestamps to order “write” requests against a majority of

���
�������
	�
��
	

���

����������

������	
��
������

Figure 1: A typical FAB structure. Client computers connect
to the FAB bricks using standard protocols. Clients can issue
requests to any brick to access any logical volume. The bricks
communicate among themselves using our replication protocol.

replicas. However, Thomas’ protocol only guarantees con-
vergence, which is too weak for a distributed logical disk.
FAB guarantees linearizability [7]. Several state-machine
replication algorithms, such as Paxos [9], use majority vot-
ing to achieve a total order for requests. Our replication
protocol exploits the semantics of read and write opera-
tions to achieve the same thing in fewer rounds, using less
space. Messaging-based atomic register algorithms [4, 11]
resemble our algorithm the most; they use majority voting
and exploit read and write operation semantics. These al-
gorithms, however, require more rounds (especially in the
common case) than ours and lack support for process re-
covery.

2 Structure of FAB

Figure 1 shows the structure of FAB. Client systems con-
nect to FAB bricks using standard protocols such as Fibre
Channel or iSCSI. Bricks are connected to each other us-
ing standard local-area networks, such as 1 Gbps Ethernet.
FAB presents the clients with a number of logical volumes,
each of which may be accessed transparently as if it were
a single disk. Since FAB is a decentralized system with-
out a central management node, a client can ask any brick
to create, resize, or access a logical volume. Bricks use
a custom protocol, described in the next section, to coor-
dinate among themselves and provide a consistent view of
volumes. A single FAB system is anticipated to contain up
to 5000 bricks with a logical capacity of 2 petabytes.

FAB internally splits each logical volume into fixed-size
segments. Each segment contains a number of blocks, the
minimum unit of access. The segment size and block size
default to 8GB and 1KB, respectively. A number of seg-
ments are gathered into groups. Each group is replicated
over several bricks (three by default: see below), chosen
randomly out of the set of bricks with available space.
The use of segments and groups enables efficient meta-
data management; segments are used in layout manage-
ment and groups for replication and availability.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 171

read

writeprewrite

X

Z
Y

C1

C2

Timeline

write

(1) (2) (3) (4) (5) (6) (7)

read writerepair

Failure-free
execution

Recovery from
a coordinator failure

Replicas

Coord-
inators

Figure 2: In this example, a disk block is replicated on three bricks, X , Y , and Z. Two coordinators, C1 and C2, issue requests to the
replicas. The first scenario (steps 1 to 3) shows a failure-free execution. Brick C1 writes to the block in two rounds. In the prewrite
round, the replicas update their logTs to indicate a new ongoing update and promise not to accept any request older than this request.
In the write round, the replicas actually write the new value to their disks and sets ts to indicate that the update is complete. In step (3),
node C2 reads blocks from a majority of �X ,Y ,Z�, discovers that the block contents are consistent and finishes (in practice, C2 reads
the block value from only one replica; see Section 3.1.) The second scenario (steps 4 to 7) shows why the prewrite round is needed.
Here, C1 tries to write, but crashes just after sending the prewrite to only Y . Later, while trying to read, C2 discovers that ts ��logTs on
Y ; i.e., the replicas are inconsistent because of an incomplete write request. C2 runs the repair round in step (6) on a majority of the
replicas to discover the newest value, and writes it back to (at least) the majority of the nodes in step (7), so that future requests will
never read older values.

Each brick internally runs three software modules: the co-
ordinator module that receives client requests and coordi-
nates disk read or write requests on behalf of clients, the
block-management module that actually reads and writes
disk blocks, and the configuration-management module
that oversees administrative changes. The next section de-
scribes the interaction between the coordinator and block-
management modules. The configuration-management
module uses the Paxos distributed consensus algorithm [9]
to replicate configuration information—e.g., the set of
bricks that exist in the system, and the name and layout
of logical volumes—on all bricks. We plan to investigate
a more efficient configuration management scheme in the
future.

The choice of a redundancy scheme to provide high reli-
ability at an acceptable cost is an important consideration
for FAB. We have considered erasure coding and replica-
tion. Erasure coding has high space efficiency and high re-
liability, but poor performance when bricks fail (reads ac-
cess multiple bricks and writes require a read before writ-
ing). Instead, FAB uses replication of data across multiple
bricks to overcome brick failures. We compared the relia-
bility of 2-way and 3-way replication schemes by comput-
ing their mean time to data loss (MTTDL) and mean un-
availability using component failure rates from Asami [3]
and by assuming that data is lost when all bricks holding
replicas of any segment fail. We consider a FAB system
of 256 bricks; each brick uses RAID-5 across 12 SATA
disks holding replicas of 128 data segments. Each segment
group contains 32 segments. For 2-way replication, we es-
timate a MTTDL of 267 years and a mean unavailability
of 0.02% (1.8 hours/year) which is inadequate for critical
applications. For 3-way replication, the MTTDL is 1.3
million years and the mean unavailability is 3�10�6% (1

second/year), which is acceptable. Based on these consid-
erations, we chose 3-way replication as the default policy,
but we also allow administrators to choose other replica-
tion factors.

Creating three replicas for each logical block sounds ex-
pensive, but is only 33% more capacity intensive than
RAID-10; and FAB systems are build from cheaper com-
ponents than existing high-end disk arrays, which reduces
the cost substantially. In Section 5, we discuss our plan
to use “witness” replicas to reduce the effective storage
consumption, while maintaining an acceptable level of re-
liability.

3 The FAB replica-management protocol

This section describes FAB’s approach to replica consis-
tency. We first introduce the basic protocol for maintain-
ing replicated blocks. Later sections describe performance
optimizations and extensions to optimize the system’s per-
formance and memory consumption.

In FAB, an I/O request to logical blocks is handled by the
coordinator module of any brick (from a clients view, ev-
ery brick can act as a disk array controller). FAB runs
a variation of a timestamp-based majority-voting proto-
col [12]. The full details of the protocol and a correctness
proof are presented in [5].

Figure 2 shows an example. The task of the coordinator is
straightforward in theory: when writing, it generates a new
timestamp and writes the value and timestamp to the ma-
jority of replicas; when reading, it reads from the majority
and returns the value with the newest timestamp.

The failure of the coordinator itself, however, causes a
problem, because it may leave a new value on a sub-



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association172

Workload date length volume
size

#writes #reads data written data read unique data
written

Cello 9/2002 1 day 1.4 TB 5,250,126 6,766,002 67.4 GB 160 GB 27.1 GB
SAP 1/2002 15 min 5 TB 150,339 4,835,793 1.75 GB 55.4 GB 1.36 GB
OpenMail 10/1999 1 hr 7 TB 931,979 355,962 61.3 GB 2.47 GB 1.64 GB

Table 1: Workload characteristics. Date shows when the trace was collected. Unique data written is the amount of data written once
overlapping writes are removed.

majority of the replicas. A logical disk system must en-
sure linearizability [7]—roughly speaking, all clients must
see a single global ordering of (either successful or failed)
read and write requests for each logical block, even when
these requests are coordinated by different bricks. Thus,
after a coordinator failure, future “read” requests on the
same block must all return the old block value or all return
the value attempted by the failed coordinator (unless the
block is overwritten by a newer “write” request). Previous
approaches, such as those using two-phase commits [6],
cannot ensure a quick fail-over. FAB takes an alternative
approach, performing recovery in a lazy manner when a
client tries to read the block for the first time after the fail-
ure.

To detect the partial writes that result from failures, each
replica of a logical block keeps two timestamps: the ts is
the timestamp of the value currently stored, whereas the
logTs is the timestamp of the newest ongoing “write” re-
quest. As illustrated in Figure 2, a “write” request runs in
two phases, using the timestamps to ensure linearizability.
A “read” request usually runs in one phase, but takes three
phases when timestamp state indicates the past failure of
a (different) coordinator: the value with the highest times-
tamp is stored in a majority with a timestamp greater than
that of any previous writes, including any partial writes.

We assume that clients have multi-path capability, so the
failure of a coordinator does not stop them issuing re-
quests to FAB. Since FAB requires no change to clients,
the clients’ own software and the standard protocol used
between clients and FAB dictate client reaction to coordi-
nator failure.

3.1 Improving the efficiency of majority voting

Majority voting has been proposed as a simple yet robust
replication method for quite a while [6, 12], but no system
has used it in a high-throughput environment. The often-
cited reason is that it is inefficient, because “read” requests
must contact multiple remote replicas [14]. This reason,
however, does not apply to FAB for the two reasons.

First, we apply an “optimistic read” technique for the com-
mon case scenario of reading from a (logical) block that is
already consistent. Here, the coordinator reads the actual
block contents from one idle replica and reads only times-
tamps from others in the quorum. This technique, in effect,

reduces the number of disk accesses to one per “read” re-
quest, as the vast majority of timestamps will be cached in
main memory for the reasons described in the next section.

Secondly, FAB is a naturally disk-I/O-bound system; the
CPU and network spend most of the time waiting for disk
I/Os to complete. The overhead of extra timestamp pro-
cessing does not slow the system down.

3.2 Reducing the overhead of timestamp man-
agement

One challenge that FAB faces is the timestamp manage-
ment overhead: for every 1 TB of data, with a 12 byte
timestamp recorded for every 1KB block, 12 GB of space
could potentially be required to store timestamps. This
information must be kept persistently, yet this amount of
NVRAM is infeasible. We employ several techniques to
reduce the overhead of timestamp management substan-
tially.

First, we observe that timestamps are used only to dis-
ambiguate concurrent updates and to “repair” the results
of previous failures. Thus, in the case where all replicas
of a logical block are functional, timestamps can be dis-
carded once all the replicas have acknowledged an update.
Replies to the client are made as soon as a majority of
the replicas have acknowledged an update. The coordi-
nator, in the background, runs a third phase to write pro-
cessing in which it lets replicas remove their timestamps
once all have replied. In the normal case, a brick needs to
keep timestamps only for blocks that are actively updated;
these timestamps can easily be kept in NVRAM. After one
of the replicas fails, other replicas must keep timestamps
for blocks that are updated, until the replica recovers or
a reconfiguration starts. However, as we show below, it
is extremely unlikely that the number of these timestamps
exceeds what a brick can store in memory.

A second optimization can be made by observing that
a single “write” request almost always updates multiple
blocks, and that each of the blocks affected will have the
same timestamp. We thus keep timestamp information on
ranges of blocks, rather than per-block.

To investigate the impact these optimizations would have,
and to determine the actual amount of memory needed, we
have analyzed several real-world I/O traces, summarized
in Table 1.



HotOS IX: The 9th Workshop on Hot Topics in Operating SystemsUSENIX Association 173

Workload raw written multiple

Cello 16.8 GB 26.4 MB 2.28 MB
SAP 60 GB 128 MB 10.3 MB
OpenMail 84 GB 38.4 MB 4.00 MB

Table 2: Timestamp memory requirements. Raw is the amount
of memory required with a timestamp for every 1KB block, writ-
ten is the amount required if timestamps are only kept for blocks
written during the trace, multiple is the amount if a timestamp
covers multiple blocks. For sparse structures, we assume a dou-
bling over the raw timestamp size to allow for the data struc-
ture overhead. All numbers except for raw (which does not
vary over time) have been normalized to be per-hour, i.e., the
amount of memory required for every hour of operation while a
replica is unavailable. This normalization results in pessimistic
estimates—as significant spatial locality is shown over time, the
rate of timestamp generation decreases when longer time peri-
ods are observed. For a longer, 3 day “Cello” trace, the rate of
timestamp generation is half of that shown by the 3rd day.

Cello: A file system managed by an 8 processor HP9000
N4000 for 20–30 researchers, with 16 GB of RAM, and
an HP XP512 disk array.

SAP: A SAP ISUCCS 4.5B and Oracle supporting 3000
users and several background batch jobs running on an
HP V2500 with an HP XP512 disk array.

OpenMail: An HP9000 K580 server with 6 CPUs, 3.75
GB of RAM, and an EMC 3700 Symmetrix disk array.
Approximately 2000 users access their email during the
course of the trace.

Table 2 shows the amount of memory required for times-
tamp information under various circumstances. These re-
sults show that even if a system is down for several days,
even a relatively modest amount of memory will be suffi-
cient to store all the timestamps needed.

4 Data layout and load balancing

As discussed in Section 2, FAB chooses the set of repli-
cas for each segment randomly. The randomized layout
has many advantages over a deterministic mapping such
as chained declustering [10]: the load is uniformly dis-
tributed over the bricks; when bricks leave FAB, reassign-
ing the segment replicas on these bricks to other bricks is
straightforward; similarly, when new bricks join FAB, re-
assigning segment replicas from heavily loaded bricks to
the new bricks is easy to do; and non-homogeneous bricks
with different capacities and performance characteristics
can be handled. Moreover, by using reasonably large seg-
ments (say, 8GB) the size of the layout table can be kept
small.

The FAB replica-management protocol permits actual data
reads to be made from any replica; the other replicas only

provide timestamp information. By having coordinators
perform the data read from the least loaded replica, load
can be shifted away from a heavily loaded brick to its
neighbors (bricks holding replicas of the segments on the
heavily loaded one), which can further shift read load to
their neighbors, and so on, until the entire FAB shares
the load. This mechanism makes it possible to accom-
modate bricks with heterogeneous performance. It also
makes FAB highly resilient to load imbalance due to brick
failures, since the read load from failed bricks is automat-
ically spread over the entire FAB. More intelligent load
balancing may be considered in future work.

5 Current status and future work

We have implemented a prototype and are studying its
behavior under various situations, including failures and
overloads.

We identify two major areas of future work. One is dy-
namic volume reconfiguration after failures or to improve
performance. The requirement remains the same: lineariz-
ability, asynchronous coordination, and no service stop-
page during reconfiguration. We plan to adapt the tech-
nique described in [11], by superimposing a new quorum
configuration using Paxos, transferring contents to new
bricks, and garbage collecting old quorum configurations
in the background.

The other is reducing the storage overhead of quorum-
based replication using witnesses and witness promotion.
We adapt the timestamp-discarding scheme introduced in
Section 3.2 to create “witness” replicas that only keep
timestamps, but no actual block values (at least in the long
term). By replicating a logical segment on only f �1 nor-
mal replicas and f additional witnesses, the segment can
tolerate f failures with little space overhead. A witness
participates in the block-I/O protocol exactly like other
replicas—it actually stores block contents in a scratch disk
area. When it receives a “discard timestamps” request for
a block, however, it recycles the disk area. In the common
case where all replicas are functional, a witness only con-
sumes disk blocks for ongoing updates. When a witness
accumulates too many disk blocks for outstanding updates
after a failure of another replica, it eventually promotes
itself into a full-fledged replica using the aforementioned
reconfiguration algorithm.

In the longer term, we also need to evaluate the full cost
of ownership of a FAB system, including maintenance in
the face of the higher expected rate of component failures,
power and cooling expenses, and to address the potential
engineering problems of a FAB system at the scale of 5000
bricks.



HotOS IX: The 9th Workshop on Hot Topics in Operating Systems USENIX Association174

6 Acknowledgements

We would like to thank other members of the HP Labs
Storage Systems Department for feedback, particularly
John Wilkes. Our shepherd, Jeff Chase, provided valuable
comments that improved the paper.

References
[1] Khalil Amiri, Garth A. Gibson, and Richard Golding.

Highly concurrent shared storage. In Proceedings of the In-
ternational Conference on Distributed Computing Systems
(ICDCS 2000), Taipei, Taiwan, April 2000.

[2] D. Anderson, J. Dykes, and E. Riedel. More than an
interface—SCSI vs. ATA. In USENIX Conf. on File and
Storage Technologies (FAST), San Francisco, CA, March
2003.

[3] S. Asami. Reducing the cost of system administration of a
disk storage system built from commodity components. PhD
thesis, University of California, Berkeley, May 2000. Tech.
Report. no. UCB-CSD-00-1100.

[4] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory ro-
bustly in message-passing systems. Journal of the ACM,
42(1):124–142, 1995.

[5] Svend Frolund, Arif Merchant, Yasushi Saito, Su-
san Spence, and Alistair Veitch. Building stor-
age registers from crash-recovery processes, May
2003. Tech report HPL–SSP–2003–14, available at
http://www.hpl.hp.com/research/ssp/papers/.

[6] D. Gifford. Weighted voting for replicated data. In Pro-
ceedings of the 7th. Symposium on Operating Systems Prin-
ciples, 1979.

[7] Maurice P. Herlihy and Jeanette M. Wing. Linearizability:
a correctness condition for concurrent objects. ACM Trans.
on Prog. Lang. and Sys. (TOPLAS), 12:463–492, 1990.

[8] IBM. IceCube: storage server for the Internet age.
http://www.almaden.ibm.com/cs/storagesystems/IceCube/.

[9] Leslie Lamport. Paxos made simple. ACM SIGACT News,
32(4):18–25, December 2001. http://research.microsoft.-
com/users/lamport/pubs/pubs.html.

[10] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual
disks. In Proceedings of the 7th Int. Conf. on Architec-
tural Support for Prog. Lang. and Op. Systems, pages 84–
92, Cambridge, MA, 1996.

[11] N. A. Lynch and A. A. Shvartsman. Rambo: A reconfig-
urable atomic memory service for dynamic networks. In
16th Int. Conf. on Dist. Computing (DISC), pages 173–190,
Toulouse, France, October 2002.

[12] Robert H. Thomas. A majority consensus approach to con-
currency control for multiple copy databases. ACM Trans.
on Database Sys. (TODS), 4(2):180–209, June 1979.

[13] John Wilkes. Datamesh research project, phase 1. In Proc.
USENIX Workshop on File Systems, pages 63–69, Ann Ar-
bor, MI, May 1992.

[14] Avishai Wool. Quorum systems in replicated databases:
science or fiction? Bull. IEEE Technical Committee on
Data Engineering, 21(4), December 1998.


