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Abstract

We introduce macroanalysis, an approach used to infer
the high-level properties of dynamic, distributed systems,
and an indispensable tool when faced with tasks where lo-
cal context and individual component details are insuffi-
cient. We present a new methodology, runtime path anal-
ysis, where paths are traced through software components
and then aggregated to understand global system behav-
ior via statistical inference. Our approach treats compo-
nents as gray boxes and complements existing microanal-
ysis tools, such as code-level debuggers. We use runtime
paths to deduce application state, detect failures, and di-
agnose problems, all in an application-generic fashion. We
have explored path-based macroanalysis both in a research
setting and as part of a commercial infrastructure at Tellme
Networks.

1. Introduction

Divide and conquer, layering, and replication are fun-
damental design principles useful for building large, com-
plex systems, such as Internet services, sensor networks,
and peer-to-peer (P2P) systems. Such techniques make
building large systems tractable, as they improve availabil-
ity, increase code reuse, and simplify high-level application
structure. Unfortunately, debugging ease and fault moni-
toring do not scale as well, since global context tends to be
dispersed across many small components. Building large,
complex systems that are reliable, yet maintainable and ex-
tensible, remains a challenge.

Existing debugging techniques make use of various mi-
croanalysis tools, such as code-level debuggers and appli-
cation logs. Such tools tend to provide knowledge lim-
ited to component internals, or furnish a thread-level per-
spective, so that the execution context is lost at the thread
boundaries. While they provide valuable, localized knowl-
edge, many of these tools fail to capture aggregate com-
ponent behavior and macro system properties. By way of
analogy, microanalysis allows you to see the details of each
honeybee, but macroanalysis is needed to understand how
the bees interact to keep a beehive functioning.

Various systems have exposed and exploited non-local
system context to address performance and resource allo-
cation problems [1, 15, 17]. Macroanalysis makes use of

non-local context to improve system management and reli-
ability. This is especially important for large, dynamic sys-
tems, where execution context may be distributed across
many components.

One key observation we make about dynamic, dis-
tributed systems is that most of them have a single system-
wide execution path associated with each request that they
service. Examples include Internet services that have re-
quest/response paths, and P2P systems and sensor net-
works that have one-way message paths. By tracing these
runtime paths, we expose and connect various local con-
texts dispersed throughout the system. We then use statis-
tics to analyze many of these paths and thereby better un-
derstand the system’s behavior.

There are several open, challenging problems that can
benefit from the high-level system perspective that macro-
analysis provides:

Deducing system structure: Systems evolve through
both changes to their components and changes in
how these components interact. Understanding such
inter-component relationships enables developers
and operators to anticipate potential conflicts and
debug problems. Unfortunately, current techniques
for tracking changes in these relationships rely on
error-prone, manual documentation, which is infeasi-
ble for rapidly changing systems. As systems grow
and increase in complexity, we desire automated
mechanisms for deducing system structure and
tracking its evolution.

Detecting application-level failures: Despite our best ef-
forts at unit testing and quality assurance, services
still fail. Worse still, many application-level faults
are only seen by end users after deployment, even
though systems are constantly monitored for signs of
failure. One large commercial service has found that
such errors take considerably longer to detect than
lower-level failures. The difficulty is that broken or
misconfigured components or bad component interac-
tions may only exhibit symptoms at the application
level, and the global context required to programmat-
ically diagnose such application-level failures is usu-
ally not available.
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Diagnosing failures: Failures often manifest themselves
far from their root cause. In the extreme case, faults
are not detected within the system’s boundaries at all
and are only visible to external observers. Unfortu-
nately, existing debugging and diagnosis tools have a
limited, local view of the system, and thus work best
when failures manifest themselves close to the cause.
We desire tools that use global failure information to
help operators and developers identify the root cause.

The contributions of this paper are:

1. Recognizing that macroanalysis is critical when de-
veloping, evolving, and maintaining reliable systems
as they grow in size and complexity.

2. A path-based macroanalysis framework, where we
first record the components and resources used to
service each request, and then use statistical anal-
ysis techniques to deduce system structure, detect
application-level failures, and diagnose problems.

We stress that macroanalysis complements, and does
not replace, traditional component-oriented systems ap-
proaches. We often use such tools to flesh out issues identi-
fied via macroanalysis. For example, our failure diagnosis
can determine the specific requests and component(s) in-
volved in a failure, but identifying the actual cause may
require looking at source code or component logs.

The paper is organized as follows: Section 2 develops
the runtime path model. Section 3 describes our analysis
framework and current status. Section 4 discusses our re-
sults addressing the challenging problems above, both in a
research setting and as part of a commercial infrastructure
at Tellme Networks. We outline future research directions
in Section 5 and discuss related work in Section 6.

2. Runtime Paths

We extend the dataflow paths in Scout [15] and Ninja
[18] 1 to incorporate runtime properties. A runtime path is
the control flow, resources, and performance characteristics
associated with servicing a request. Paths can be recorded
during runtime by tracing each request through a live sys-
tem, spanning the system’s layers to access direct compo-
nent and resource dependencies. Each path then provides a
vertical slice of the system from a request’s perspective.

We use the term “request” in a broad sense to mean a
unit of work. This includes both requests that require re-
sponses (e.g., HTTP) and those that don’t (e.g., one-way
messages).

There are two main requirements for a system to sup-
port runtime paths. First, it must be possible to associate a
unique path with each distinct request. For example, if the
same request is handled by different components in dif-
ferent, possibly distributed processes, we must be able to

1Scout: “a logical channel through a multi-layered system over which
I/O data flows within a single host”. Ninja: “a flow of typed data through
multiple services across the wide area”.
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make this connection, perhaps by using a unique ID that
travels with the request. Second, it must be possible to re-
port observations and associate them with the components
that made them. For a pipelined system, a logging mecha-
nism together with knowledge of component request entry
and exit would be sufficient.

The components make local observations, from which
global context is obtained by stringing them together along
a runtime path. Each observation contains information
about some active component, such as its name, location,
timestamp, latency, and arguments. The tracing should
be extensible to allow for integration with microanalysis
techniques. For example, identifiers could be included in
each observation to provide a link with standard applica-
tion logs.

3. Analysis Framework

The analysis framework consists of five major mod-
ules, as illustrated in Figure 1. The Tracer tracks re-
quests through the target system, reporting any observa-
tions made. Although Tracer is platform-specific, it can
be application-generic for platforms that host application
components by monitoring requests that enter and exit the
components.

The Aggregator receives these observations and recon-
structs the runtime paths, which the Path Repository stores.
The Statistical Declarative Query Engine handles the data
management complexity. It enables us to transparently op-
timize data storage, and evaluate and update different anal-
ysis algorithms. Monitoring and debugging tools should
be built on top of this engine. The Visualization module
helps users understand system behavior. Paths have a natu-
ral graph representation: nodes are observations and edges
indicate request propagation.

We implemented an extensible Aggregator, a Path
Repository, and a Query Engine, with plugins for data clus-
tering and structural anomaly detection. We are currently
experimenting with different analysis algorithms.

We built a Tracer for a web server, Jetty, and a clus-
tered J2EE application server, JBoss [10]. The web server
inserts a unique request ID into the HTTP request header.
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This ID is placed in thread local storage for intra-thread
component calls, and passed via a modified RMI library
for inter-thread calls. The total code impact was 428 lines
in 10 files.

We have been running PetStore, an e-commerce appli-
cation, and ECperf [20], an industry-standard benchmark
for J2EE application servers. Both have a 3-tier architec-
ture consisting of a web server, application components,
and a database. The tracing instrumentation is application-
generic, so no application changes were necessary.

To measure worst-case performance overhead, we
recorded the observations synchronously, using the Java
Messaging Service and Java’s default serialization meth-
ods. We computed a throughput overhead of 16% and an
average observation size of 200 bytes – 16 bytes after gzip
compression. The compression ratio is high because of re-
dundant text strings, including JVM version identifiers and
host names. Using better Java object transport and serial-
ization routines [23] should improve performance.

4. Applying Macroanalysis

4.1. Deducing System Structure

Understanding a service’s structure, including the rela-
tionship between external requests and the service’s inter-
nal components and state, enables developers and opera-
tors to anticipate potential problems before they upgrade
the system. Knowing how components and shared state
are used is critical when debugging failed requests. De-
pendency models have been proposed to improve system
reliability and availability [8], but there are few techniques
that generate such models automatically.

Key idea: Paths directly capture application struc-
ture.

Runtime paths record how a system services real
requests, which compares favorably with error-prone,
human-generated models and static analysis that predict
how the system might service such requests. Automati-
cally generated models help developers and operators un-
derstand the actual behavior of systems under investiga-
tion, and can be used as input to recovery mechanisms,
such as recursive restarts [4], to reduce mean time to re-
pair.

The Magpie project is using macroanalysis techniques
to generate detailed and accurate models of distributed sys-
tem workloads [14]. While currently used for capacity
planning, these models may also be applied to performance
debugging, system tuning, and fault diagnosis.

Key idea: Paths associate requests with internal
state.

Internet services typically store persistent state in a
database to allow for easier front-end scaling. Different
requests often share persistent state, but the components
handling each request may be unaware of any such shar-
ing. For example, although checkout and login requests
may seem like independent HTTP requests, they may share
a user profile. A bug during checkout could corrupt this

Database Tables

Request Type Product Signon Account Banner Inventory

verifysignin R R R

cart R R R/W

commitorder R W

category R

search R R

productdetails R R/W

newaccount R R

checkout W

Table 1. An automatically generated partial state de-
pendency table for PetStore. To determine which request
types share state, group the rows by common entry under
the desired column. For example, the checkout request
only writes to the Inventory table, and shares state with
three other requests: cart, commitorder, and productdetails.

shared state and cause subsequent login failures. Such bugs
are difficult to diagnose without an understanding of how
various dispersed local contexts depend on each other.

By tracing runtime paths from the web servers, through
the application components, and to the databases, we can
easily determine how state is shared across requests.

Table 1 shows the mapping between request types and
their reads and writes to database tables in PetStore, our
desired level of state granularity.

4.2. Detecting Failures using Anomalies

Key idea: Paths often behave differently in failure
modes. Hence we can detect failures via changes in path
behavior.

Application-level failure detection remains a major
challenge today. In practice, quality assurance testing
mainly catches simple bugs. Many complex bugs exist in
deployed software because of difficulties accurately sim-
ulating the workload of a production environment, diffi-
culties modeling the production environment itself, incom-
plete test coverage, and economic factors. Detecting these
bugs in a live system can be difficult, since many bug symp-
toms are only evident to an end-user, such as incorrect text
on a web page.

If we analyze a live system using macroanalysis tech-
niques, however, we can often see secondary effects of fail-
ures. Many errors cause runtime paths to end prematurely,
while others send paths to less-often used error handlers.
Still others, such as fail-stutter faults, simply cause devia-
tions in the latencies of particular path components.

One macroanalysis technique for detecting these
changes in path behavior is to search for asymmetries in the
interactions among replicated, load-balanced components.
Consider an Internet service where all but one of the middle
tier nodes are sending queries to a database. Since the mid-
dle tier nodes are replicas of one another, it is likely that the
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one node’s database inactivity is a symptom of some prob-
lem. We can extend this idea to treat excessively heavy or
light component interaction volume as a sign of failure.

Another technique is to group paths by request type and
search for significant deviations in latency or structure.

4.3. Diagnosing Failures through Correlations

Key idea: Runtime paths make the root cause’s in-
teraction with a failed request apparent, so that we can
quickly explain a failure by a bad component-level or
systemic behavior, and can also quickly assess the user
visible impact (and hence the priority) of the problem.

When something fails, we want to know why. The chal-
lenge here is in tracing externally observed (application-
level) failures back to a system fault or root cause.

In practice, we start with sets of suspected failed re-
quests (e.g., reported by users or discovered via anomaly
detection) and successful requests, and face the task of
identifying the runtime path features underlying any real
failures.

The diagnosis task can be cast as a data mining prob-
lem, by using data clustering to group the components as-
sociated with each failed request’s path. Using a previous
prototype, Pinpoint [5], we showed that for single compo-
nent failures the data clustering approach provides a trade-
off between accuracy, at 70-90%, and false positives, at 20-
40%. This compares favorably with direct fault detection
and other automatic analysis methods, which either offer
40% accuracy or many (almost 90%) false positives. Also,
we found that paths are vital when dealing with multi-
component faults.

Alternatively, the task can be cast as a classification
problem in the machine learning domain. Here, the root
causes would be the strongest classification rules.

An important benefit of our failure diagnosis approach is
that the runtime path data links the logically separate tasks
of failure detection and diagnosis, which enables an un-
derstanding of mechanisms where the connection between
problem causes and symptoms is not otherwise apparent.

4.4. A Commercial Example

Tellme Networks has developed a path-based macro-
analysis infrastructure, its Observation Logs, to help ensure
the high reliability of Tellme’s network. Tellme runs voice
applications; for the purpose of our current discussion, the
system is a telephony network with an Internet back-end,
and serviced requests include an audio response to a tele-
phone caller’s voice query.

After explaining how runtime paths behave in this ex-
ample, we will discuss a failure and describe how we used
paths to first diagnose the problem, then deduce runtime
system structure, and ultimately craft a detection algo-
rithm.

An actual, though simplified, voice response path is il-
lustrated in Figure 2. There are 31 observations in this run-
time path, plotted by the relative time at which each obser-
vation was made. We call attention to 4 of these, indicating
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Figure 2. A typical runtime path in Tellme’s network.

when the user begins and finishes speaking an utterance
and when we start and stop sending audio in response.

The latency profile of the runtime path shown in Fig-
ure 2 is close to ideal for this system; most of the time is
spent listening to or talking to the user, and the logic con-
necting the request with the response is rapidly executed.
An important metric is the latency between end of speech
and start of playback. This 1760 ms delay is perceived by
the user, and indicates how quickly the system appears to
respond.

Now consider a real network failure. In this case, an
isolated process supplying the audio to the machine on the
telephony network experienced an internal fault, so that it
produced shorter waveforms than the desired ones. This
failure is not catastrophic at the system level; a rare, short
waveform typically goes unnoticed by the user. The prob-
lem is therefore difficult to detect via low-level system
monitoring and requires significant application knowledge
to handle effectively.

Despite this challenge, we quickly diagnosed this prob-
lem using global context in the Observation Logs. An en-
gineer familiar with a particular application noticed a short
audio playback and provided details of a phone call that en-
abled us to quickly locate the relevant runtime path. Once
visualized as in Figure 2, a short playback time suggested
a truncated waveform. The preceding observations con-
firmed that a remote process thought it had successfully
serviced the audio request, when in fact a rare error had
occurred. We identified the particular remote process from
the path information, and text logs on that machine subse-
quently revealed the root cause.

Once we understood the runtime path characteristics for
this failure, we were able to query the Observation Logs
to detect any similar occurrences throughout Tellme’s net-
work. We deduced enough system state to know which
components affected which applications, so we could iso-
late the failing component and assess application impact.

With this new knowledge, we crafted a monitor to use
these sub-path latency deviations to detect any future fail-
ures in both our production and testing environments.
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5. Future Directions

In addition to refining our framework and exploring dif-
ferent algorithms, we are applying our path-based macro-
analysis methodology to sensor networks and P2P systems.

Key idea: Violations of macro invariants are signs
of system intrusion or buggy implementations. Macro-
analysis can help discover invariants, detect violations,
and pinpoint the offending components.

Because of the highly distributed and dynamic nature of
these systems, many domain-specific macro invariants are
difficult to validate using microanalysis or static analysis
[7]. Consider an upper bound on the number of hops made
during message delivery in a P2P system as a macro invari-
ant. By applying root cause analysis, we can identify peers
that incorrectly route messages. In this example, although
each node may detect an invariant violation, a diagnosis is
difficult without the context contained in a runtime path.

6. Related Work

We consider both microanalysis and macroanalysis
work, as well as hybrid approaches.

Macroanalysis Magpie [14] profiles web sites to observe
the processing state machine for each HTTP request
and to measure request resource consumption (CPU,
disk, and network usage) at each stage. The focus is
on building probabilistic models of the workload suit-
able for performance prediction, tuning, and diagno-
sis.

Microanalysis: Anomaly detection has been used to iden-
tify software bugs [7, 22] and to detect intrusions [12],
using events based on resource usage [6], system calls
[9], and network packets [16]. Paths provide non-
local context and may make the detection of a new
class of intrusions possible.

Hybrid: There are several recent commercial request trac-
ing systems of note. PerformaSure [19] and AppAs-
sure [3] focus on performance diagnosis. IntegriTea
[21] focuses on capturing and replaying failure con-
ditions. These systems work with isolated requests,
while we aggregate multiple paths and use statistical
techniques to infer collective system behavior.

Dynamic program slicing [2] and Whole Program
Paths [11] capture dynamic control flow and have
been applied to single-process systems analysis.

Some distributed and parallel debuggers support step-
ping through remote function calls [13]. These tools
typically work with individual requests and homoge-
neous components, and are designed to aid in low-
level debugging.

7. Conclusion

Macroanalysis satisfies a need when monitoring and de-
bugging large, complex systems where local context is of

insufficient use. To this end, we have presented a runtime
path-based approach along with a family of macroanalysis
tools that are proving effective in addressing several chal-
lenging and important problems. Our method involves dy-
namically tracing runtime paths through live systems, and
recording local observations about performance, interact-
ing components, and resource usage along the way. We
subsequently apply data mining techniques to statistically
infer aggregate system behavior. This approach is applica-
ble to a large variety of systems, and complements existing
microanalysis tools that provide additional insight into in-
dividual components.

Our results with distributed Internet systems demon-
strate promising progress in 1) deducing system structure
and dependencies, 2) detecting failures via path anoma-
lies, and 3) diagnosing problems. We plan to extend our
methodology to peer-to-peer systems and sensor networks
by validating macro invariants.
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