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Abstract

Peer-to-peer storage aims to build large-scale, reli-
able and available storage from many small-scale unreli-
able, low-availability distributed hosts. Data redundancy
is the key to any data guarantees. However, preserving
redundancy in the face of highly dynamic membership
is costly. We use a simple resource usage model to mea-
sured behavior from the Gnutella file-sharing network to
argue that large-scale cooperative storage is limited by
likely dynamics and cross-system bandwidth — not by
local disk space. We examine some bandwidth optimiza-
tion strategies like delayed response to failures, admis-
sion control, and load-shifting and find that they do not
alter the basic problem. We conclude that when redun-
dancy, data scale, and dynamics are all high, the needed
cross-system bandwidth is unreasonable.

1 Introduction

Recent systems (CAN, Chord, Pastry, or Tapestry [7,
11, 8, 13]) enable peer-to-peer lookup overlays robust
to intermittent participation and scalable to many un-
reliable nodes with fast membership dynamics. Some
papers ([1, 6]) express a hope that, with extra data re-
dundancy, storage can inherit scalability and robust-
ness from the underlying lookup procedure. More work
still ([5, 9]) implies this hope by using robust lookup as
a foundation for wide-area storage layers, even though
this complicates other desirable properties (e.g., server
selection).
This paper argues that trying to achieve all three

things — scalability, storage guarantees, and resilience
to highly dynamic membership — overreaches band-
width resources likely to be available, regardless of
lookup. Our argument is roughly as follows. Simple
considerations and current hardware deployment sug-
gest that idle upstream bandwidth is the limiting re-
source that volunteers contribute, not idle disk space.
Further, since disk space grows much faster than access
point bandwidth, bandwidth is likely to become even
more scarce relative to disk space.
We elaborate this argument in the next section us-

ing a generic resource usage model to estimate conserva-
tively the costs associated with maintaining redundancy

in systems built from unreliable parts. Section 3 adapts
our model to accommodate hosts which are temporar-
ily unavailable but have not lost their data. Section 4
discusses other issues such as admission control or load-
shifting, hardware trends, and the importance of incen-
tives. Along the way we use numbers from Gnutella,
a real peer-to-peer system, to highlight how bandwidth
contributions are the serious limit to scaling data. We
conclude in Section 5.

2 A Simple Model

In this section we consider the bandwidth necessary
for reliable peer-to-peer storage. We present a simple
analytic model for bandwidth usage that attempts to pro-
vide broad intuition and still apply in some approxima-
tion to currently proposed systems.

2.1 Assumptions

We assume a simple redundancy maintenance algo-
rithm: whenever a node leaves or joins the system, the
data that node either held or will hold must be down-
loaded from somewhere. Note that by join and leave
we mean really joining the system for the first time or
leaving forever. We do not refer to transient failures,
but rather the intentional or accidental loss of the con-
tributed data. Section 3 elaborates this model to account
for temporary disconnections that may not trigger data
transfers. We also assume there is a static data placement
strategy (i.e., a function from the current membership to
the set of replicas of each block).
We make a number of simplifying assumptions.

Each one is conservative — increased realism would
increase the bandwidth required. Note that any stor-
age guarantee effectively insists that the probability of
not getting a datum is below some threshold. The time
to create new nodes must therefore consider the worst-
case accidents of data distribution and other variations.
Therefore, the fact that we perform an average case anal-
ysis makes our model conservative.
We assume identical per-node space and bandwidth

contributions. In reality, nodes may store different
amounts of data and have different bandwidth capa-
bilities. Maintaining redundancy may require in cer-
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tain cases more bandwidth than the average bandwidth.
Creating more capable nodes from a set of less capa-
ble nodes might take more time. Average space and
bandwidth therefore conservatively bound the worst case
which is the relevant bound for a guarantee.
We assume a constant rate of joining and leaving.

As with resource contributions, the worst case is a more
appropriate figure to use for any probabilistic bound.
The average rate bounds the maximum rate from below,
which is again conservative. We also assume indepen-
dence of leave events. Since failures of networks and
machines are not truly independent, more redundancy
would really be required to provide truer guarantees.
We assume a constant steady-state number of nodes

and total data size. A decreasing population requires
more bandwidth while an increasing one cannot be sus-
tained indefinitely. It would also be more realistic to as-
sume data increases with time or changes which would
again require more bandwidth.

2.2 Data Maintenance Model

Consider a set of N identical hosts which coop-
eratively provide guaranteed storage over the network.
Nodes are added to the set at rate α and leave at rate λ,
but the average system size is constant, i.e. α = λ. On
average, a node stays a member for T = N/λ.
Our data model is that the system reliably stores a

total ofD bytes of unique data stored with a redundancy
expansion factor k, for a total of S = kD bytes of con-
tributed storage. One may think of k as either the repli-
cation factor or the expansion due to coding. The de-
sired value of k depends on both the storage guarantees
and redundant encoding scheme and is discussed more
in the next section.
We now consider the data maintenance bandwidth

required to maintain this redundancy in the presence of
a dynamic membership. Note that the model does not
consider the bandwidth consumed by queries, and there-
fore we present a conservative bandwidth estimate.
Each node joining the overlay must download all the

data which it must later serve, however that subset of
data might be mapped to it. The average size of this
transfer is S/N . Join events happen every 1/α time
units. So the aggregate bandwidth to deal with nodes
joining the overlay is αS

N
, or S/T .

When a node leaves the overlay, all the data it housed
must be copied over to new nodes, otherwise redundancy
would be lost. Thus, each leave event also leads to the
transfer of S/N bytes of data. Leaves therefore also re-
quire an aggregate bandwidth of λS

N
, or S/T . The total

bandwidth usage for all data maintenance is then 2S

T
, or

a per node average of:

B/N = 2
S/N

T
, or BW/node = 2

space/node
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Figure 1. Log-Log plots for the participation requirements of
a) dial-up and b) cable modem networks. Plotted are thresh-
olds below which various amounts of unique data will incur
over 50% link saturation just to maintain the data. These use a
redundancy k = 20.

2.3 Understanding the Scaling

Figure 1 plots some example “threshold curves” in
the lifetime-membership plane. This is the basic par-
ticipation space of the system. More popular systems
will have more hosts, and those hosts will stay mem-
bers longer. Points below a line for a particular data
scale require data maintenance bandwidth in excess of
the available bandwidth. We plot thresholds for main-
tenance alone consuming half the total link capacity for
dial-ups and cable modems. The data scales we chose,
1 TB, 50 TB, and 1000 TB, might very roughly cor-
respond to a medium-sized music archive, a large mu-
sic archive, and a small video archive (a few thousand
movies), respectively.
There are two basic points to take away from these

plots. First, short membership times create a need for
enormous node counts to support interesting data scales.
E.g., a million cable modem users must each provide a
continuous month of service to maintain 1000 TB even
if no one ever actually queries the data! Second, this
strongly impacts how fast the storage of such a network
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can grow. At a monthly turnover rate, each cable modem
must contribute less than 1GB of unique data, or 20GB
of total storage. Given that PCs last only a few years and
a few years ago 80 GB disks were standard on new PCs,
20 GB is likely about or below current idle capacity.
Figure 1 uses a fixed redundancy factor k = 20. The

actual redundancy necessary depends on T ,N , probabil-
ity targets for data loss or availability. Section 3 exam-
ines in more detail the necessary k for both replication-
style and erasure coded redundancy for availability.

3 Availability and Redundancy

This section expands our model to include hosts that
are transiently disconnected and estimates redundancy
requirements in more detail.

3.1 Downtime vs. Departure

So far our calculations have assumed that the re-
sources a host contributes are always available. Real
hosts vary greatly in availability [3, 4, 10]. The previous
section shows that it takes a lot of bandwidth to preserve
redundancy upon departures. So it helps to distinguish
true departures from temporary downtime, as in [3].
Our model for how systems distinguish true depar-

tures from transient failures is a membership timeout, τ ,
that measures how long the system delays its response
to failures. I.e., the process of making new hosts respon-
sible for a host’s data does not begin until that host has
been out of contact for longer than time τ .
Counting offline hosts as members has two conse-

quences. First, member lifetimes are longer since tran-
sient failures are not considered leaves. Second, hosts
serve data for a fraction of the time that they are mem-
bers (or a fraction of members serve data at a given mo-
ment). We define this fraction to be the availability, a.
Since only a fraction of the members serve data at

a time, more redundancy is needed to achieve the same
level of availability. Also, the effective bandwidth con-
tributed per node is reduced since these nodes serve only
a fraction of the time. Thus, the membership lifetime
benefits gained by delayed response to failures are offset
by the need for increased redundancy and reduced effec-
tive bandwidth. To understand this effect more quantita-
tively we must first know the needed redundancy.

3.2 Needed Redundancy: Replication

First we compute the data expansion needed for
high availability in the context of replication-style re-
dundancy. Note that availability implies reliability since
lost data is inherently unavailable.
Average lifetime now depends on timeout: T = Tτ .

System size and availability also depend on τ , andNτ =
N0/aτ , by our definition of availability.

We wish to know the replication factor, ka, needed
to achieve some per object unavailability target, εa. (I.e.,
1 εa has some “number of 9s”.)

εa = P (object o is unavailable)

= P (all ka replicas of o are unavailable)

= P (one replica is unavailable)ka

= (1 aτ )ka

which upon solving for ka yields

ka =
log εa

log(1 aτ )
≈

log 1/εa
aτ

+O(a2) (2)

We can now evaluate the tradeoff between data main-
tenance bandwidth and membership timeout. We ac-
count for partial availability by replacingB with aτB in
Equation (1). Solving for B/N and substituting Equa-
tion (2) gives:

Bτ/Nτ =
2kaD

NτaτTτ

=
2D

NτaτTτ

log εa
log(1 aτ )

(3)

To apply Equation (3) we must knowNτ , aτ , and Tτ ,
which all depend upon participant behavior. We estimate
these parameters using data we collected in a measure-
ment study of the availability of hosts in the Gnutella file
sharing network. We used a methodology similar to a
previous study [10], except that we allowed our crawler
to extract the entire membership, therefore giving us a
precise estimate of Nτ . Our measurements took place
between April 11, 2003 and April 19, 2003.
Figure 2 suggests that discriminating downtime from

departure can lead to a factor of 30 savings in mainte-
nance bandwidth. It seems hopeless to field even 1 TB
at high availability with Gnutella-like participation.

3.3 Needed Redundancy: Erasure Coding

A technique that has been proposed by several sys-
tems is the use of erasure coding [12, 2]. This is more ef-
ficient than conventional replication since the increased
intra-object redundancy allows the same level of avail-
ability to be achieved with much smaller additional re-
dundancy. We now exhibit the analogue of Equation (2)
for the case of erasure coding.
With an erasure-coded redundancy scheme, each ob-

ject is divided into b blocks which are then stored with
an effective redundancy factor kc. The object can be re-
constructed from any availablem blocks taken from the
stored set of kcb blocks (where m ≈ b). Object avail-
ability is given by the probability that at least b out of
kcb blocks are available:

1 εa =

kcb∑
i=b

(
i

kcb

)
ai(1 a)kcb i.
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Figure 2. Per node bandwidth to maintain 1 TB of unique data
at 6 nines of per-object availability with the system dynamics
of 33, 000 Gnutella hosts. Bandwidth is lessened by longer de-
lays responding to failures, but remains quite large in terms of
home Internet users. Each host contributes only about 3 GB.

Using algebraic simplifications and the normal approx-
imation to the binomial distribution (see [2]), we get
the following formula for the erasure coding redundancy
factor and then expand it in a Taylor series:

kc =


σε

√
a(1 a)

b
+

√
σ2

ε
a(1 a)

b
+ 4a

2a




2

(4)

≈

σ2
ε

4b
(1 + q)2q

1

2 (
1

a

1

q
+O(a)) (5)

where q =

√
1 +

4b

σ2
ε

.

σε is the number of standard deviations in a normal dis-
tribution for the required level of availability, as in [2].
E.g., σε = 4.7 corresponds to six nines of availability.
Figure 3 shows the benefits of coding over replica-

tion when one uses b = 15 fragments. Rather than
a replication factor of 120, one can achieve the same
availability with only 15 times the storage using erasure
codes, for large values of τ , an 8-fold savings. This
makes it borderline feasible to store 1 TB of unique
data with Gnutella-like participation and about 75 Kbps
while-up per node maintenance bandwidth. Utilization
is correspondingly lower for the same amount of unique
data. Only 500 MB of disk per host is contributed. This
is surely less than what peers are willing to donate.
Note that all of this is for maintenance only. It would

be odd to engineer such highly availabile data and not
read it. An actual load is hard to guess, but, as a rule
of thumb, one would probably like maintenance to be
less than half the total bandwidth. So, the total load one
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Figure 3. This graph shows that decreased availability from de-
layed response to failure causes a marked increase in the nec-
essary redundancy. While coding beats replication, the band-
width savings are only a factor of 8 for our Gnutella trace.

might expect would be greater than 150 Kbps or just at
the limit of what cable modems can provide.
This is also not very much service. Only 5, 000 of

the 33, 000 Gnutella hosts were usually available. If
all these hosts were cable modems, the aggregate band-
width available would be about 500Mbps, or 250Mbps
if half that is used for data maintenance. By compari-
son, the same level of service could be provided by five
reliable, dedicated PCs, each with a few $300, 250 GB
drives and 50 Mbps connections up 99% of the time.

4 Discussion

This section discusses other issues related to the
agenda and design of large-scale peer-to-peer storage.

4.1 Admission Control, Load-Shifting

Another strategy to reduce redundancy maintenance
bandwidth is to attempt to not admit highly volatile
nodes or very similarly shift responsibility to non-
volatile hosts. Fundamentally, this strategy weakens
how dynamic and peer-symmetric the network one is
envisioning. Indeed, a strong enough bias converts the
problem into a garden variety distributed systems prob-
lem — building a larger storage from a small number of
highly available collaborators.
As Figure 4 shows, in Gnutella, the 5% most avail-

able hosts provide 29 of the total 72 service years or
40%. The availability of these 6,000 nodes is about 40%
on average. If one is generous, one may also view this
5%-subset of more available hosts as a fairer model of
the behavior of a hypothetical population of peer-to-peer
participants. We repeated our analysis of earlier sections
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using just this subset of hosts with a one day member-
ship timeout. The resulting bandwidth requirement is
30 Kbps per node per unique-TB using coding. Us-
ing delayed response, coding, and admission control to-
gether enables a 1000-fold savings in maintenance band-
width over the bleak results at the left edge of Figure 2.
The total scale of this storage remains bounded by

bandwidth, though. If the 6,000 best 5% of Gnutella
peers each donated 3GB each then a total of 3 TB could
be served with six nines of availability. These hosts
would each use 100 Kbps of maintenance bandwidth
whenever they were participating. Assuming the query
load was also about 100 Kbps per host, cable modems
would still be adequate to serve this data. The same ser-
vice also could be supported by 10 universities, each us-
ing 1

3 of the typical OC3 connections and a $1, 500 PC.
Stricter admission control rapidly leads to a subset

967 Gnutella hosts with 99.5% availability. This sur-
passes even observed enterprise wide behavior [4]. The
cost of this improvement is a reduction in service time
by 10-fold. The real service reduction will depend on the
correlation between availability and servable bandwidth.
Ideally, this correlation would be strong and positive.
If the per-node bandwidth of the best hosts is roughly

10-fold the per node bandwidth of the excluded hosts
then the total service is only cut in half by using just
good nodes. Stated in reverse, leveraging tens of thou-
sands of flaky home users only doubles total data ser-
vice. This fact is further backed up by a simple back-
of-the-envelope calculation. Two million cable modem
users at 40% availability can serve about as much band-
width as 2,000 typical high availability universities al-
lowing half their bandwidth for file sharing.

4.2 Hardware Trends

The discussion so far suggests that even highly opti-
mized systems can achieve only a few GB per host with
Gnutella-like hosts and cable-modem like connections.
However, hardware trends are unpromising.

Home access Academic access
Year Disk Speed Days Speed Time

(Kbps) to send (Mbps) to send
1990 60 MB 9.6 0.6 10 48 sec
1995 1 GB 33.6 3 43 3 min
2000 80 GB 128 60 155 1 hour
2005 0.5 TB 384 120 622 2 hour

Table 1. Generous bandwidth estimates suggest distributing lo-
cal disk will get harder. Disk increased by 8000-fold while
bandwidth increased only 50-fold.

A simple thought experiment helps us realize the im-
plications of this trend. Imagine how long it would take
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Figure 4. A graph showing how most service time in Gnutella
is provided by a tiny fraction of hosts. 5% of hosts provide
40% of the total service time in a three day subset of our trace.

to upload your hard disk to a friend’s machine. Table 1
recalls how this has evolved for “typical” users in recent
times. The fourth and sixth columns show an ominous
trend for disk space distributors. Disk upload time is
getting larger quickly. If peers are to contribute mean-
ingful fractions of their disks their participation must
become more and more stable. This supports the main
point of this paper: synchronizing randomly distributed,
large-scale storage is expensive now, dynamic member-
ship makes it worse, and this situation is worsening.

4.3 Incentive Issues

Unlike pioneer systems like Napster and Gnutella,
current research trends are toward systems where users
serve data that they may have no particular interest in. A
good fraction of their outbound traffic might be saturated
by access to this data. Storage guarantees exacerbate
the problem by inducing a great deal of synchronization
traffic above and beyond access traffic. These higher
costs may make participation even more capricious than
our example of the Gnutella network. Given that sta-
ble membership is necessary to reach even modest data
scales, participation must be strongly incentivized.
The added value of service guarantees might seem

to be one incentive. However, this is not stable since a
noticeable downward fluctuation in popularity will make
the provided service decline. Another option is having
user interfaces which discourage or disallow disconnec-
tion, but this is very much against the spirit of a vol-
unteer or donation based system. One reasonable idea
is to allow client bandwidth usage to be only propor-
tional to contributed bandwidth. Enforcing this raises
many design issues, but since it is an extension to the
threat model it seems inappropriate to relegate it to an
afterthought.
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5 Conclusion

This paper argues that the real scalability problem
for robust, Internet-scale storage is not lookup state or
procedure, but rather is the service bandwidth to field
queries and maintain redundancy. For DHT-style sys-
tems, maintaining redundancy takes cross-system band-
width proportional to data scale and membership dy-
namics. All three properties — redundancy, data, and
dynamics — can be high only when cross-system band-
width is enormous.
The conflict between high availability, large data

scales, home user-like bandwidth and fast participa-
tion dynamics raises many questions about current DHT
research trajectories. In dynamic deployment scenar-
ios, why leverage many nodes to serve data a few re-
liable ones might? In static deployment scenarios, small
lookup-state optimizations may do more harm than good
in terms of system complexity and other properties, es-
pecially if designers insist on implementing other opti-
mizations in membership state restricted ways. If stor-
age guarantees are inappropriate for large-scale peer-
to-peer why worry about lookup guarantees? When
anonymity or related security properties are the high
priority guarantees, it seems bad to plan on incorporat-
ing defenses against threats to these properties as an af-
terthought.
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