Measuring Large Traffic Aggregates on Commodity Switches

Lavanya Jose, Minlan Yu, Jennifer Rexford Princeton University, NJ

Motivation

- Large traffic aggregates?
 - manage traffic efficiently
 - understand traffic structure
 - detect unusual activity

Aggregate at fixed prefix-length?

- Top 10 /24 prefixes (by how much traffic they send)
 - could miss individual heavy users
- Top 10 IP addresses ...
 - could miss heavy subnets where each individual user is small

Aggregate at all prefix-lengths? (Heavy Hitters)

Hierarchical Heavy Hitters

All the IP prefixes

Related Work

- Offline analysis on raw packet trace [AutoFocus]
 - accurate but slow and expensive
- Streaming algorithms on <u>Custom</u> Hardware [Cormode'08, Bandi'07, Zhang'04, Sketch-Based]
 - accurate, fast but not commodity

Our Work: Commodity, fast and relatively accurate

HHH on Commodity- Using OpenFlow

- Why commodity switches?
 - cheap, easy to deploy
 - let "network elements monitor themselves"
- Commodity OpenFlow switches
 - available from multiple vendors (HP, NEC, and Quanta)
 - deployed in campuses, backbone networks
 - wildcard rules with counters to measure traffic

Priority	Prefix Rule	Count
I	0010 0***	15
2	001* ****	5

OpenFlow Measurement Framework

Monitoring HHHes

Priority	Prefix Rule	Count	****
T	0000	11	((40))
2	010*	12	0***
3	0 * * *	17	$\boxed{ (40)}$
	ter excluding endant prefix		00** 01** 010* 011*
TCAM: matching	•	0001	7 (12) 9 0010, 0011, 0100, 0101, 0110, 0111
A perfect	t match!		(5)(2)(9)(3)(5)(4)

Detecting New HHHes

Monitor children of HHHes

Identifying New HHHes

- Iteratively adjust wildcard rules:
 - Expand
 - If count > T, install rule for child instead.
 - Collapse

Using **Leftover** Rules

Evaluation- Method

- Real packet trace (400K pkts/ sec) from CAIDA
 - Measured HHHes for T=5% and T=10%
 - Measuring interval M from I-60s

Evaluation- Results

- 20 rules to identify 88-94% of the 10%- HHHes
- Accurate
 - Gets ~9 out of I0 HHHes
 - Uses left over TCAM space to quickly find HHHes
 - Large traffic aggregates usually stable
- Fast
 - Takes a few intervals for I-2 new HHHes
 - Meanwhile aggregates at coarse levels

Stepping back... not just for HHHes

- Framework
 - Adjusting <= N wildcard rules
 - Every measuring interval M
 - Only match and increment per packet
- Can solve problems that require
 - Understanding a baseline of normal traffic
 - Quickly pinpointing large traffic aggregates

Conclusion

- Solving HHH problem with OpenFlow
 - Relatively accurate, Fast, Low overhead
 - Algorithm with expanding /collapsing
- Future work
 - multidimensional HHH
 - Generic framework for measurement
 - Explore algorithms for DoS, large traffic changes etc.
 - Understand overhead
 - Combine results from different switches