Measuring Large Traffic Aggregates on
Commodity Switches

Lavanya Jose, Minlan Yu, Jennifer Rexford
Princeton University, N|

Motivation

® Large traffic aggregates!?
= manage traffic efficiently
= understand traffic structure

= detect unusual activity

Aggregate at fixed prefix-length?

® Top 10 /24 prefixes (by how much traffic they send)
= could miss individual heavy users

® Top 10 IP addresses ...

= could miss heavy subnets where each individual user is small

Aggregate at all prefix-lengths? (Heavy Hitters)

® All the IP prefixes ootk
® >=afraction T of the link capacity
Rk | ek
HH: sends more than Q
T=10% of link cap. 100 0| **
0 % 010% Ol I*

) @ (s

Hierarchical Heavy Hitters

® All the IP prefixes

® >=afraction T of the link capacity

® after excluding any HHH descendants.

HH: sends more than
T= 10% of link cap. 100
HHH: @

0 kg

010%

KKK

(1)

oll*

Related Work

® Offline analysis on raw packet trace [AutoFocus]

= accurate but slow and expensive

® Streaming algorithms on Custom Hardware
[Cormode’08, Bandi’07, Zhang'04, Sketch-Based]

= accurate, fast but not commodity

Our Work:
Commaodity, fast and relatively accurate

HHH on Commodity- Using OpenFlow
® Why commaodity switches?
= cheap, easy to deploy
= let “network elements monitor themselves”
® Commodity OpenFlow switches
= available from multiple vendors (HP, NEC, and Quanta)

= deployed in campuses, backbone networks

= wildcard rules with counters to measure traffic

Priority |Prefix Rule Count

| 0010 O*** .. 15

2 001* *x**x 5

OpenFlow Measurement Framework

Install
Rules Controller
Software
:@\ SW|tCh FetCh
\ /
) , | Counts Constraints
TCAM = <= N Prefix Rules
Priority |Prefix Rule |Count - Measuring Interval M
| = No pkts to Controller
increment

Monitoring HHHes

Priority |Prefix Rule |Count ko

| 0000 11

2 010* 12 Ok s

3 0** * 17 Q
HHH: after excluding 00* 0k
any descendant prefix
rules 000%* e 010%* hH

TCAM: priority Q ° e

matchin
& 0000 0001 0010/ 0011\ 0100/ o101\ OI10/ Ol

oo @0 (S

Detecting New HHHes

® Monitor children of HHHes

® Use at most 2/T rules

O*** |>k>k>§<
OI**
0 [** 010% ol I*

@ (o

Identifying New HHHes

Iteratively adjust wildcard rules:
= Expand
* If count > T, install rule for child instead.

= Collapse
e |If count <T, remove rule.

Priority|Prefix Rule |Count

| Q*** 80

2 * Kk Kk %k

0

Using Leftover Rules

® Why left over rules? o,
= May not be |/T HHHes.
= May still be discovering new HHHes
® How to use leftover rules? 0"~ 7
= To monitor HHHes close to threshold 0
= Data shows 2-3 new 00%** 0|k
HHHes/ interval (a few secs) @

000*

0 |7 0102 Oll*
n@ (o O

000Q& 0001 ¥ 0010,/ 00I1N _0100¢__ 0101_ OI10Q Olll

100l6.000/610

Evaluation= Method

® Real packet trace (400K pkts/ sec) from CAIDA
= Measured HHHes for T=5% and T=10%

= Measuring interval M from |-60s

Evaluation- Results

® 20 rules to identify 88-94% of the 10%- HHHes
® Accurate
= Gets ~9 out of 10 HHHes
= Uses left over TCAM space to quickly find HHHes
= Large trdffic aggregates usually stable
® Fast
= Takes a few intervals for 1-2 new HHHes

= Meanwhile aggregates at coarse levels

Stepping back... not just for HHHes

® Framework
= Adjusting <= N wildcard rules
= Every measuring interval M
= Only match and increment per packet
® Can solve problems that require
= Understanding a baseline of normal traffic

= Quickly pinpointing large traffic aggregates

Conclusion

® Solving HHH problem with OpenFlow
= Relatively accurate, Fast, Low overhead
= Algorithm with expanding /collapsing
® Future work
= multidimensional HHH
= Generic framework for measurement
* Explore algorithms for DoS, large traffic changes etc.
* Understand overhead

e Combine results from different switches

