
Towards Automated Identification of Security Zone Classification in
Enterprise Networks

HariGovind V. Ramasamy†, Cheng-Lin Tsao‡, Birgit Pfitzmann†,
Nikolai Joukov†, and James W. Murray§

†Services Research, IBM Research
Hawthorne, NY, USA
{hvramasa,bpfitzm,

njoukov}@us.ibm.com

‡Georgia Tech
Atlanta, GA, USA

cltsao@gatech.edu

§IBM
Research Triangle Park

Raleigh, NC, USA
jmurray@us.ibm.com

Abstract
Knowledge of the security zone classification of devices
in an enterprise information technology (IT) infrastruc-
ture is essential in many enterprise IT transformation and
optimization activities. We describe a systematic and
semi-automated approach for discovering the security
zone classification of devices in an enterprise network.
For reduced interference with normal operation of the IT
infrastructure, our approach is structured in stages, each
consisting of two phases: one phase involves collecting
information about actually allowed network flows, fol-
lowed by an analysis phase. As part of our approach, we
describe an elimination-based inference algorithm. We
also present an alternative to the algorithm based on the
Constraint Satisfaction Problem, and explore trade-offs
between the two. Using a case study, we demonstrate the
validity of our approach.

1 Introduction
The network infrastructure of a modern enterprise is a
complex system partitioned by enterprise firewalls into
several logical network areas, called security zones. In-
formally, a security zone consists of one or more subnets.
Each security zone belongs to a zone classification (or
simply, classification), and consists of devices1 subject
to the same enterprise-level security requirements. The
classifications in an enterprise network along with secu-
rity requirements for systems and services within each
classification, is usually documented in the security pol-
icy of the enterprise. The policy defines permitted flows
between classifications.

Most enterprises have at least three classifications: in-
tranet, extranet, and opennet (Figure 1). The intranet is
a trusted network environment for hosting systems, ser-
vices, and data internal to the enterprise. The opennet
is an untrusted network environment (e.g., the Internet)
that includes all systems external to the enterprise. Se-
curity zones belonging to the extranet classification are

1Unless specified, we use the term device in a broad sense to cover
computing, network, and storage devices, both physical and virtual.

commonly referred to as demilitarized zones (DMZ), and
serve as a buffer between zones belonging to the intranet
and extranet classifications. Large enterprises often have
more than three classifications. There may be special ex-
tranets to host services used jointly by partners, vendors,
and suppliers. Zones hosting test and development ser-
vices typically have classifications different from those
hosting production services. Often, the intranet itself
may consist of further classifications, depending on the
sensitivity of the data resident and the business value sup-
ported by the constituent systems.

While most enterprises only have a small number of
classifications, there may be a large number of secu-
rity zones for each classification. The reason is that,
despite what the name may suggest, security zones are
not created solely for security purposes. Organizational,
geographical, functional, and administrative factors also
drive the creation of security zones. Even if they have
the same classification, geographically distinct devices
would have to be placed in different security zones.
Within a given location, different organizational divi-
sions may create and govern their own security zones.
Within a given division, different business applications
may be placed within their own zones. As a result, many
enterprises have a sprawl of security zones. It is not un-
common for large enterprises to have hundreds or even
thousands of security zones spanning multiple locations.

Knowledge of the zone classification of devices is a
requirement in many enterprise IT transformation and
optimization activities, such as desktop migration, cloud
migration, firewall migration, and enterprise security re-
fresh. The reason is that security zone classification pro-
vides important connectivity and isolation criteria that
need to be upheld during and after such activities. For
example, in server consolidation and virtualization activ-
ities, servers have to be migrated from a source environ-
ment to a target environment, and communication con-
trols between servers belonging to different zones have to
be reproduced in the target environment. Security zone
classification of devices is also required for compliance
and audit purposes, e.g., to assess whether end-to-end

Figure 1: Security Zones and Zone Classifications in a
Simplistic Enterprise

data flows are in compliance with enterprise policy.
From our experience in several client engagements, we

have observed that many enterprises lack an inventory
that details the zone classification of devices. Typically,
when needed, such information is obtained by contact-
ing system and network administrators. This manual ap-
proach often yields unreliable, outdated, and incomplete
information. If a system or network administrator had
moved on to a different company, no one in the enterprise
may have security zone classification information for de-
vices previously under his/her responsibility. Thus, there
is a clear need for automated approaches to obtaining se-
curity zone information. The need is even greater when
an external service provider or consulting organization
which has no prior knowledge of or privileged access to
the enterprise environment is called upon to perform en-
terprise IT transformation or optimization activities.

There are many network administration tools such
as Nmap [6], traceroute, netstat, and SNMP-based ap-
proaches that can collect and analyze information about
network configuration of devices in the infrastructure.
Advanced tools can estimate the run-time network con-
figuration of applications by analyzing traffic informa-
tion provided by network services. There are also many
academic and commercial firewall configuration analy-
sis tools (e.g., [1, 2, 8]). However, these tools alone will
not reveal what security zone classification (e.g., service
provider extranet, customer extranet, or confidential in-
tranet) a firewall interface or the devices placed behind
that interface belong to.

In this paper, we describe a systematic and semi-
automated approach for discovering security zone infor-
mation in enterprise networks. Our approach is based
on the observation that for reliably discovering security
zone classification, information about network configu-
ration alone is not sufficient. Since zones are created
with enterprise security policies in mind, that informa-
tion has to be compared against what is expected from a
policy point of view. Our approach proceeds in stages,
with each stage consisting of an information collection
phase and an analysis phase. The collection phase ob-
tains information about actually allowed network flows.
In the analysis phase, an elimination-based inference al-
gorithm may be executed. The algorithm eliminates clas-
sifications from an initial assignment of all possible clas-
sifications by comparing actually allowed network flows

with flows permitted by enterprise security policy. We
provide an alternative to the algorithm based on the Con-
straint Satisfaction Problem (CSP) [7]. We explore the
trade-offs between the inference algorithm and the CSP-
based solution, and outline how they can be used in con-
cert for improved efficiency. We describe a case study to
demonstrate the utility and validity of our approach.

2 Solution Approach
We distinguish between network flows actually allowed
and those permitted by policy. There are several known
methods for collecting information about actually al-
lowed network flows. Examples include (i) configuration
analysis of firewalls, hosts, and applications [8], (ii) anal-
ysis of network statistics and flow logs [3], (iii) active
probes [6], and (iv) packet analysis [9]. Different collec-
tion methods involve varying interference with the nor-
mal network operation. Our approach sequences them
in such a way that lower interference methods are ex-
ecuted before higher interference ones. The collection
phases are interleaved with analysis phases whose re-
sults are used to reduce the scope of deployment of sub-
sequent higher-interference collection methods. We call
this strategy incremental discovery.

We now illustrate incremental discovery, based on two
sample collection methods: netstat and connectivity
probing. The netstat command, supported on most
devices and OS platforms, is one way of collecting net-
work configuration and run-time (network-related) appli-
cation behavior. Execution of the command does not
generate any external traffic. End-to-end connectivity
probing can determine whether packets are able to reach
a peer device through any intermediate filters. It can also
identify open ports at the peer. Common applications
and tools such as telnet, ftp, nslookup, and Nmap can be
used for probing. Since the probe traffic may raise se-
curity concerns, proper coordination with administrators
and users may be necessary when using this method.

In incremental discovery, netstat-based discovery
is performed prior to connectivity probing. Flows al-
ready observed through netstat-based discovery can be
skipped during connectivity probing. More importantly,
analysis of netstat command output from various de-
vices helps identify which devices belong to the same
subnet. That result coupled with the observation that all
devices in the same subnet have the same classification
can be used to reduce the scope of probing; instead of
probing device-to-device connectivity, probing subnet-
to-subnet connectivity may suffice to determine the fil-
ters placed at the intermediate enterprise firewalls.

Each analysis phase may involve executing an infer-
ence algorithm which derives the security zone informa-
tion by comparing enterprise security policy with infor-
mation about actually allowed network flows. We de-

scribe our system model in Section 2.1, and present the
inference algorithm in Section 2.2. In Section 2.3, we
describe an alternative formulation of the zone classifica-
tion problem based on the Constraint Satisfaction Prob-
lem (CSP). We illustrate how these two methods can be
used in concert for improved efficiency.

2.1 System Model
Network area is an intermediate construct we use in the
process of deriving security zones in a network environ-
ment and identifying their classifications. A network
area may consist of a device or a grouping of logically
adjacent devices (such as subnet). A security zone is
composed of one or more subnets.

We use a unified framework based on the notion of
feasibility sets [5] for representing both actually allowed
network flows and those permitted by enterprise policy.
A feasibility set Fai−>aj = {x|fij(x)} is used to de-
note the traffic flows from one network area ai to an-
other aj . Guttman and Herzog [5] define it as the set of
all abstract packets that survive all of the filters traversed
along the path between ai and aj . Here, x is a packet
and the predicate fij(x) is defined over the fields of x.
The predicate may include regular expression matches,
denoted by ∼=. A field y of packet x is denoted by x.y,
a sub-field z of y is denoted by x.y.z, and so on. Typ-
ical packet fields that are considered include source IP
address, source port, destination IP address, destination
port, and protocol type. If Fai−>aj = true, then all
flows are allowed from ai to aj . If Fai−>aj = false,
then no flow is allowed from ai to aj .

Example 1. Suppose that a firewall with its inside inter-
face on network area aj is configured to allow all traf-
fic from the 192.168.1.0/8 network, and only SSH and
HTTPS traffic from all other networks. In this case, the
feasibility set for traffic reaching aj from any network
area ai, where i 6= j, is expressed as:
Fai−>aj = {x | (x.IP.SourceAddr ∼=

192.168.1.[0..255]) ∨ (x.IP.Protocol = 6 ∧
x.TCP.DstPort ∈ {22,443})}.

High-level security policies are usually documented in
natural language or in a format intuitive to a human op-
erator. The policy guides network, security, and system
administrators to construct and maintain the infrastruc-
ture that complies with the security goal. Manual effort
is needed to transform these policies into feasibility sets.
However, since enterprise security policies are relatively
static, the translation is typically a one-time effort.

Example 2. Consider an enterprise-level policy that per-
mits only strongly authenticated traffic from the DMZ
to the intranet. Strong authentication exists when a sys-
tem or user can prove knowledge of a secret (e.g., pass-
word, private key) without it being observed or revealed.

A lower-level policy may further enumerate the allowed
set of strongly authenticated protocols as: (i) TCP traffic
(i.e., IP Protocol 6) to ports 22 (SSH), 25 (SMTP), 389
(LDAP), and 443 (HTTPS), (ii) UDP traffic (i.e., IP Pro-
tocol 17) to port 500 (IPSec - Internet Key Exchange),
and (ii) IPSec traffic (i.e., IP Protocols 50 and 51).

The feasibility set for the policy can be expressed as:
Fai−>aj = {x | (x.IP.Protocol = 6 ∧ x.TCP.DstPort ∈

{22,25,389,443})∨ (x.IP.Protocol = 17∧ x.TCP.DstPort
∈ {500}) ∨ (x.IP.Protocol ∈ {50,51}) }.

2.2 Inferencing Algorithm

At a high-level, the inference algorithm works as fol-
lows: Initially, each network area with unknown classifi-
cation is assigned all possible classifications. The infer-
ence algorithm successively excludes potential classifi-
cations for a network area if the actually allowed network
flows between that network area and others would con-
tradict the security policy for those classifications. The
inferencing is based on the assumption that the actually
allowed network flows are a subset of the flows permitted
by policy. Extending our approach to work without this
assumption is the focus of ongoing work.

We now describe the algorithm. Let A = {a1, a2, . . .
an} be the set of network areas. For a given invocation
of the algorithm, the number of network areas is fixed.
However, the composition of A can vary between suc-
cessive invocations of the algorithm, i.e., stages of our
approach. Let C = {c1, c2, . . . cn}, where ci is the set
of possible colors (i.e., classifications) for area ai. The
values of ci are drawn from a domain D of colors, de-
fined by the enterprise policy. For example, for the sim-
plistic enterprise shown in Figure 1, D = {Blue, Yellow,
Red}, with the elements representing intranet, extranet,
and opennet respectively. If ai’s color is known a priori,
then ci is initialized with that value. Otherwise, ci is ini-
tialized with all values in D (for the first stage), or with
values left after the previous stage (for all stages other
than the first stage). The set A must include at least two
elements that belong to different colors, and whose col-
ors are known in advance. Those elements serve as the
baseline for comparison. This requirement can be easily
satisfied in practice by considering one known subnet on
the Internet and another on the Intranet.

LetN (ai, aj) be the feasibility set of actually allowed
network flows from area ai to aj as indicated by data
from various collection methods. Let P(ci, cj) be the
feasibility set of packets from an area of color ci to an-
other of color cj that are permitted by the security policy.

During each iteration, a color α is allowed to exist as
a possible color for network area ai if there is at least
one color β ∈ cj such that the feasibility set of actually
allowed packets between areas ai and aj is a subset of
the feasibility set for the colors α and β. Otherwise, α

Algorithm 1: Algorithm CLASSIFY (C,A,P,N)
1.1 repeat
1.2 color eliminated← false

{indicates whether any color was eliminated in this iteration}
1.3 foreach network area ai ∈ A that has |ci| > 1 do
1.4 foreach color α ∈ ci do
1.5 foreach network area aj ∈ A, where i 6= j, do
1.6 α possible← false

{indicates whether α is a possible color for ai}
1.7 foreach color β in cj do
1.8 ifN (ai, aj) ⊆

P(α, β)∧N (aj , ai) ⊆ P(β, α) then
1.9 α possible← true

1.10 if α possible = false then
1.11 ci ← ci − α
1.12 color eliminated← true

until color eliminated = false

is eliminated from the list of possible colors for ai. The
algorithm iterates until no color elimination is possible.

Algorithm CLASSIFY (C,A,P,N) may be invoked
multiple times during the course of the incremental dis-
covery process. Specifically, it may be invoked at most
once during the analysis phase of each stage; at most
once, because other types of analysis not involving the
algorithm may be performed. For example, hosts belong-
ing to the same subnet may be identified and aggregated
into one network area. Similarly, two network areas that
are observed to have unrestrained connectivity without
any intermediate enterprise firewalls may be merged into
one network area. Similarly, new network areas of inter-
est may be revealed by analyzing new connection logs.
Such analysis may alter the setsA and C between succes-
sive invocations of Algorithm CLASSIFY (C,A,P,N).

If two network areas ai and aj are being merged, then
the set A will be changed to A = A \ {ai, aj} ∪ {ak}.
Also, set C will be changed to C = C \ {ci, cj} ∪ {ck},
where the color of the merged network area ak is given
by ck = ci ∩ cj . The feasibility sets for ak with respect
to another network area al are given by
Fak−>al = Fai−>al∪Faj−>al = {x|fil(x)∨fjl(x)}
Fal−>ak = Fal−>ai∪Fal−>aj = {x|fli(x)∨flj(x)}

2.3 CSP-Based Solution
The comparison in line 1.8 of Algorithm CLASSIFY
(C,A,P,N) considers only two network areas at a time.
As shown in Example 3 below, this may result in certain
possible color eliminations being overlooked by Algo-
rithm CLASSIFY (C,A,P,N). To address this issue,
we formulate a finite-domain CSP [7] that can be then
solved using a general-purpose CSP solver.

Variables: C = {c1, c2, . . . cn}
Domain of Values: D
Constraints: N (ai, aj) ⊆ P(ci, cj), where 1 ≤

i, k ≤ n
A complete assignment to a CSP is defined as one in

which every variable is mentioned, and a solution to a

Figure 2: Output of Algorithm CLASSIFY (C,A,P,N)
HHHHSrc

Dst
α β γ δ ε θ

α true false Flow
X

Flow
X

Flow
Z false

β false true Flow
X false false Flow

Z

γ
Flow
X

Flow
X true false Flow

Y false

δ
Flow
X false false true false Flow

Y

ε
Flow
Z false Flow

Y false true false

θ false Flow
Z false Flow

Y false true

Table 1: Predicates for Feasibility Sets Representing Se-
curity Policy (i.e., P) for Example 3. Predicate “Flow
X” holds for all packets that are of flow type X.

CSP is a complete assignment that satisfies all the con-
straints [7]. For the above CSP, each variable ci has a
domain D of possible values, and the number of possi-
ble complete assignments is

∏n
i=1 ci = O(dn), which

is exponential in the number of variables. Here, d =
|D|. The worst-case complexity of Algorithm CLAS-
SIFY (C,A,P,N) can be shown to be a much smaller
O(n3d3k). Here, k is the maximum number of clauses
in the predicate defining N (ai, aj) or P(ci, cj) for any
1 ≤ i, j ≤ j. Thus, it is typically much more efficient to
first run Algorithm CLASSIFY (C,A,P,N) and use the
output of the algorithm to narrow down the domain of
possible values for each ci. Essentially, each color elim-
ination done in advance using Algorithm CLASSIFY
(C,A,P,N) adds a unary constraint to the CSP that re-
stricts the value of some ci.

Example 3. Consider the situation shown in Figure 2 af-

Figure 3: Further Color Elimination using CSP Solver

ter running Algorithm CLASSIFY (C,A,P,N). Here,
the domain C of colors is {α, β, γ, δ, ε, θ} (i.e., d = 6)
and a subsection of the network topology is shown high-
lighting three areas a1, a2, and a3 among the n network
areas. The edges are labeled with the types of network
flows observed between each pair of nodes. For instance,
Flow Type X was observed between a1 and a2. Table 1
shows the enterprise-level flow control policy between
various classifications expressed as feasibility sets. Per
Table 1, this implies that c1 = {α, β} and c2 = {γ, δ}.
Algorithm CLASSIFY (C,A,P,N) will not be able to
eliminate further colors beyond what is shown in Fig-
ure 2. On the other hand, if the output of the algorithm
were used to initialize the domain values {ci|1 ≤ i ≤ n}
and then fed to a CSP solver, then the solver would con-
sider the following six constraints simultaneously:
{ x | x ∈ Flow X} ⊆ P(c1, c2)
{ x | x ∈ Flow X} ⊆ P(c2, c1)
{ x | x ∈ Flow Y} ⊆ P(c2, c3)
{ x | x ∈ Flow Y} ⊆ P(c3, c2)
{ x | x ∈ Flow Z} ⊆ P(c3, c1)
{ x | x ∈ Flow Z} ⊆ P(c1, c3)
As a result, the solver would arrive at the solution

{c1 = α, c2 = γ, c3 = ε} (Figure 3). It is important to
note that if only the CSP solver were used (i.e., without
first running Algorithm CLASSIFY (C,A,P,N), then a
total of 63 = 216 possible complete assignments would
have been considered for the three network areas. How-
ever, when the output of the algorithm is used to initialize
the domain values, the number of possible color assign-
ments for the three network areas reduces to just 8.

3 Implementation and Case Study
We have implemented a prototype of the solution ap-
proach described above as a tool called BlueGates. The
tool is capable of analyzing actually allowed network
flows from individual hosts, connectivity probes between
peer devices, and CISCO PIX/ASA [4] firewall config-
uration files. Based on the analysis results, the tool
derives feasibility sets to represent configuration infor-
mation, and compares them with feasibility sets derived
from an XML representation of the enterprise policy.

We now use a case study to illustrate our approach.
The case study represents an abstracted subset of a real-
life, operational enterprise environment. Table 2 shows
the enterprise-level flow policy, i.e., the predicates for
feasibility sets with the domain of colors, D = {Blue,
Green, Yellow, Red} (indicated by the letters B, G, Y, and
R respectively in Figure 4). In the particular enterprise
environment we considered, these colors roughly corre-
sponded to the classifications intranet, secure extranet,
extranet, and Internet, respectively. Predicate “Flow X”
holds for all packets with characteristics of flow type X.
Thus, “Flow Standard Auth” holds for all packets that are

HHHHSrc
Dst

Blue Green Y ellow Red

Blue true true true true

Green
Flow Standard
Auth true true true

Y ellow
Flow Strong
Auth

Flow Strong
Auth true true

Red false false true true

Table 2: Predicates for Feasibility Sets Representing Se-
curity Policy (i.e., P).

part of a standard authentication flow (such as the FTP or
Telnet protocol). “Flow Strong Auth” holds for all pack-
ets that are part of a strong authentication flow (such as
the HTTPS or SSH protocol).

Initialization: Figure 4(a) shows the stage before any
discovery in which we are given seven hosts X1, X2,
X3,, X4, X5, B1, and R1. The colors for the hosts Xi

are initially unknown, whereas B1 is of color Blue and
R1 is of color Red. In the absence of any other informa-
tion, each network area is initialized to contain a single
host. Thus, the set A of network areas is initialized to
{a1,. . .,a7} and C is initialized to {c1,. . .,c7}. Here, net-
work area ai = {Host Xi}, for 1 ≤ i ≤ 5, whose color
ci is unknown and therefore initialized to the set D. Fur-
ther, a6 = {Host B1} whose color c6 = {Blue}, and a7 =
{Host R1} whose color c7 = {Red}.

Stage 1: Figure 4(b) shows the first stage of discov-
ery, which involves analysis of netstat files obtained
from the individual hosts. Analysis of these files by the
BlueGates tool has established that hosts X1 and X2 be-
long to the same subnet. Consequently, a1 and a2 are
merged into a single area a8, whose color c8 = c1 ∩ c2.
Thus, A = {a3,. . .,a8} and C becomes {c3,. . .,c8}. The
analysis also reveals the existence of active (unauthenti-
cated) HTTP connections from host R1 to X2 and X4;
the feasibility sets N are updated accordingly before in-
voking Algorithm CLASSIFY (C,A,P,N). When the
algorithm completes execution, c4 and c8 are reduced to
the set {Yellow, Red}.

Stage 2: Figure 4(c) shows the second stage of discov-
ery, which involves active probing and analyzing connec-
tivity between hosts. BlueGates’ analysis has established
that (i) hostsX1,X3, andX5 can communicate with host
B1 using the HTTPS protocol (i.e., strong authentica-
tion), and (ii) TFTP (a basic file transfer protocol with
no user authentication) is allowed from host X4 to X3.
The feasibility setsN are updated accordingly before in-
voking Algorithm CLASSIFY (C,A,P,N). When the
algorithm completes execution, c3 and c8 are reduced to
the set {Yellow}.

Stage 3: Figure 4(d) shows the third stage of discov-
ery, in which intermediate enterprise firewalls are identi-
fied and their configuration files analyzed by BlueGates.
The analysis reveals that there is no firewall separating
the traffic between X3 and X4. Consequently, network

(a) Initialization (b) Stage 1

(c) Stage 2 (d) Stage 3

Figure 4: Incremental Discovery

areas a3 and a4 are merged into a single area a9, whose
color c9 = {Yellow}. Thus, A = {a5,. . .,a9} and C be-
comes {c5,. . .,c9}. Further, the firewall configuration
analysis reveals that HTTP traffic is allowed from R1

to a previously unknown host X6, which is in the same
subnet as host X5. Consequently, network area a5 is ex-
panded to the set {Host X5, Host X6}. The feasibil-
ity sets N is updated accordingly before invoking Al-
gorithm CLASSIFY (C,A,P,N). When the algorithm
completes execution, c5 is reduced to the set {Yellow}.

4 Conclusion
We described a systematic and semi-automated approach
for discovering security zone classifications of devices
in an enterprise environment. We use a common format
(based on feasibility sets [5]) to represent both network
flows actually allowed (as seen in configuration settings
or traffic observed) and the flows permitted by the enter-
prise security policy. As part of our approach, we de-
scribed an elimination-based inference algorithm and an
alternative based on the constraint satisfaction problem.
For improved efficiency and reduced interference to nor-
mal network operation, we described a staged approach
to collecting information about actually allowed flows.

One limitation of our approach is the assumption that
the actually allowed network flows are a subset of the
network flows allowed by enterprise security policy. The
validity of this assumption can be increased by apply-
ing our approach to obtain the classifications for network
areas in a small subset of (rather than) the entire enter-
prise network, and then repeating this process for dif-
ferent subsets of the enterprise network. When this as-
sumption does not hold, our approach will indicate that

there is a non-compliance (e.g., the CSP solver will in-
dicate that no solution is possible). However, it will not
pinpoint the exact sources of the non-compliance. Our
ongoing work focuses on addressing this limitation. One
promising approach that we are exploring involves incre-
mentally adding network areas to the input setA until the
inference algorithm or the CSP solver indicates a non-
compliance situation. Future work will also include ap-
plying this approach in large-scale IT environments and
evaluating its performance and effectiveness.

References
[1] AL-SHAER, E., AND HAMED, H. Modeling and Management

of Firewall Policies. IEEE Transactions on Network and Service
Management 1 (April 2004), 2–10.

[2] AL-SHAER, E., AND HAMED, H. Taxonomy of Conflicts in Net-
work Security Policies. IEEE Communications 44 (March 2006),
134–141.

[3] CARACAS, A., DECHOUNIOTIS, D., FUSSENEGGER, S., GAN-
TENBEIN, D., AND KIND, A. Mining Semantic Relations using
NetFlow. In 3rd IEEE/IFIP Intl. Workshop on Business-Driven IT
Management (BDIM) (2008), pp. 110–111.

[4] CISCO SYSTEMS. Cisco PIX/ASA Products. http://www.
cisco.com/en/US/products/ps6120, 2010.

[5] GUTTMAN, J. D., AND HERZOG, A. L. Rigorous automated net-
work security management. International Journal for Information
Security 4, 1-2 (2005), 29–48.

[6] LYON, G. F. Nmap Network Scanning. http://nmap.org/
book/toc.html, 2010.

[7] TSANG, E. Foundations of Constraint Satisfaction, 2nd ed. Aca-
demic Press, 1993.

[8] TUFIN TECHNOLOGIES. SecureTrack Firewall Operations Man-
agement. http://www.tufin.com, 2010.

[9] WIRESHARK. The Wireshark Tool. http://www.
wireshark.org/, 2010.

