
Discrete Control for Dependable IT Automation

Yin Wang∗
University of Michigan

Terence Kelly
Hewlett-Packard Laboratories

St́ephane Lafortune∗
University of Michigan

1 Introduction

Information technology (IT) administration is increas-
ingly automated. Workflows—concurrent programs
written in very-high-level languages—are an increas-
ingly popular IT automation technology. Like multi-
threaded programming, workflow programming is noto-
riously difficult and error prone. Concurrency, resource
contention, race conditions, and similar issues lead to
subtle bugs that can survive testing undetected. Sta-
tic workflow analysis provides a reliable offline way to
validate IT administrative actions before they are per-
formed [2], complementary to dynamic validation and
post-mortem root cause localization. Static analysis,
however, merely detects defects; repair remains man-
ual, time-consuming, error-prone, and costly. Manually-
corrected workflows are less natural, less readable, and
less efficient than the flawed originals.

This paper shows howdiscrete control theorycan al-
low safe execution of unmodified flawed workflows by
dynamically avoiding undesirable execution states, e.g.,
states that violate dependability requirements. By exter-
nally enforcing compliance with some dependability re-
quirements, our approach allows programmers to write
straightforward workflows instead of perfect ones; by
partially decoupling workflow software from depend-
ability requirements, it reduces the need to alter the for-
mer when the latter change. Classical control theory has
recently been applied to several performance-related IT
problems [1]. Discrete control employs very different
methods and modeling formalisms [3] and is better suited
to safety and dependability problems. Discrete control
has been applied in domains ranging from manufactur-
ing to telecommunications. However it has never before
been implemented for any IT automation or CS systems
problem.

2 Discrete Control Theory

Whereas classical control deals with continuous-state
systems whose dynamics are described by differential
equations, discrete control theory considers discrete-
state systems with event-driven dynamics. Discrete con-
trol requires a model of the system to be controlled. We

∗Y.W. and S.L. acknowledge support from HP Labs and NSF.

Figure 1: Workflow control architecture.

use a finite state automatonG representing all execution
states reachable from the initial state, and we automat-
ically generateG from a workflow. Undesirable behav-
iors are specified as sublanguages of the regular language
associated with automatonG. A simpler mode of spec-
ification is to defineforbidden statesrepresenting unde-
sirable execution states. The goal of discrete control is
to ensure that the system reaches satisfactory termina-
tion without entering forbidden states, even if worst-case
sequences of uncontrollable state transitions occur. This
goal is achieved in two stages: First, anoffline control
synthesisstage uses the system modelG and the specifi-
cation of terminal and forbidden states to automatically
synthesize a discrete controller. Then duringonline dy-
namic controlthe controller selectively disables control-
lable transitions based on the current execution state.

The synthesized controller should have two properties:
First, it should be minimally restrictive, disabling transi-
tions only when necessary to avoid forbidden states and
livelock/deadlock. Second, it must not prevent success-
ful termination. A controller with these properties re-
stricts the system to itsmaximally permissive control-
lable non-blocking sublanguage, and existing methods
can synthesize such a controller [3]. Control synthesis
requires time quadratic in the size ofG in the worst case.
However, control synthesis is an offline operation; in the
workflow domain, it does not increase execution time.

3 Discrete Control for Workflows

Figure 1 depicts our workflow control system architec-
ture. We begin with a workflow consisting of atomic
tasks organized via control-flow structures. Typical
structures include sequence, iteration, AND-forks to
spawn parallel executions, OR-forks to select a branch,



(a) Workflow diagram.

(b) State-space automaton for workflow of Figure 2(a). Deadlock
state corresponds to double failure. Forbidden states contain neither
two origin nor two destination copies. Unsafe states may reach for-
bidden states via sequences of uncontrollable transitions.

Figure 2: Data migration workflow

and AND/OR joins to “reconnect” flow after a fork.
First, a translator converts the workflow into an au-
tomaton that models its control flow and reachable state
space. Transitions in the automaton represent task in-
vocation/completion, control structure entrance/exit, and
resource acquisition/release; states represent the results
of these transitions. The translator identifies uncontrol-
lable transitions by high-level workflow features and can
automatically detect livelock/deadlock states. The pro-
grammer may define additional application-specific for-
bidden states. Next, a discrete control synthesis algo-
rithm uses the automaton to generate control logic that
specifies which controllable transitions should be dis-
abled as a function of current execution state. Both
workflow→automaton translation and control synthesis
are offline operations. At run time, the workflow ex-
ecution engine tracks execution state and refrains from
executing controllable transitions that the control logic
disables in the current state. The result is that the system
will avoid forbidden states whenever possible, regardless
of uncontrollable transitions that may occur during exe-
cution.

Figure 2(a) shows a simplified data migration work-
flow that moves two original copies of a data set, O1 and

O2, to destinations D1 and D2. The two branches of the
AND-fork represent concurrent copy-erase operations.
Uncontrollable “failure” transitions model the possibil-
ity that copy operations may fail. If the O1→D1 copy in
the left branch fails, the workflow will retry from O2 or
D2. However the workflow does not specify which; this
decision is made by the execution engine. If the second
attempt to create D1 also fails, the workflow will end in
global failure. The right branch, responsible for creat-
ing D2, is symmetric. Tasks require exclusive access to
copies of data.

The problem with this workflow is that if both
O1→D1 and O2→D2 tasks fail, and if the response to
these failures are attempts to copy D2→D1 and D1→D2
respectively, then the workflow deadlocks with each
branch waiting for the other to complete. Static analy-
sis alone can detect this problem, requiring a program-
mer to repair the flaw manually. Discrete control allows
us to safely execute the flawed workflow without modi-
fication. The controller will avoid the deadlock state by
disabling either D2→D1 or D1→D2 if both O1→D1 and
O2→D2 fail. Figure 2(b) depicts the state-space automa-
ton for our example workflow. There is one deadlock
state corresponding to the above double failure.

Suppose a new requirement is imposed: At any in-
stant in time, either both origin or both destination copies
must exist. The workflow does not satisfy this new re-
quirement because it may erase O1 before the O2→D2
copy completes. With discrete control, the new re-
quirement can be satisfied simply by forbidding states
that violate it and then synthesizing a new controller.
The controller satisfies the new requirement by appropri-
ately postponing erase operations. This scenario shows
that discrete control can accommodate new requirements
without modifying workflows.

In conclusion, we have described how discrete con-
trol methods can synthesize controllers from workflows
and declarative specifications. These controllers add
negligible run-time overhead, and they prevent unde-
sirable behavior while otherwise restricting execution
as little as possible. Extensive tests on real workflows
bundled with Oracle BPEL Designer and on randomly-
generated workflows demonstrate that offline control
synthesis scales to workflows of practical size.

References
[1] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.Feedback

Control of Computing Systems. Wiley, 2004.

[2] J. Mendling et al. A quantitative analysis of faulty EPCs in the SAP
reference model. Technical Report BPM-06-08, Business Process
Management Center, 2006.

[3] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes.SIAM J. Control Optim., 25(1):206–
230, 1987.

2


