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Abstract
Production run software failures cause endless grief to
end-users, and endless challenges to programmers as
they commonly have incomplete information about the
bug, facing great hurdles to reproduce it. Users are of-
ten unable or unwilling to provide diagnostic informa-
tion due to technical challenges and privacy concerns;
even if the information is available, failure analysis is
time-consuming.

We propose performing initial diagnosisautomatically
andat the end user’s site. The moment of failure is a
valuable commodity programmers strive to reproduce—
leveraging it directly reduces diagnosis effort while si-
multaneously addressing privacy concerns.

Additionally, we propose afailure diagnosis protocol.
So far as we know, this is the first such automatic pro-
tocol proposed for on-line diagnosis. By mimicking the
steps a human programmer follows dissecting a failure,
we deduce important failure information. Beyondon-
line use, this can also reduce the effort of in-house test-
ing.

We implement some of these ideas. Using lightweight
checkpoint and rollback techniques and dynamic, run-
time software analysis tools, we initiate the automatic
diagnosis of several bugs. Our preliminary results show
that automatic diagnosis can efficiently and accurately
find likely root causes and fault propagation chains. Fur-
ther, normal execution overhead is only 2%.

1 Introduction

Software failures contribute greatly to down time and se-
curity holes. Despite expending enormous effort in soft-
ware testingprior to release, software failures still occur
duringproduction runs, as faults slip through even strict
testing. The ubiquity of bugs in production runs is strong
testimony to the fact that addressingproduction runsoft-
ware failures is critical.

While much work has been conducted on software
failure diagnosis, previous work focuses onoff-line di-
agnosis. Tools like interactive debuggers, or more ad-
vanced tools like data slicing [16], backtracking [7] and
deterministic replay [8, 12] can help, but requireman-
ual effort, and so cannot be used for production runs.
Other off-line techniques such as delta debugging [15]
and failure-inducing-chop inference [4] automatesome

parts ofoff-linediagnosis, yet impose high overhead.
Current on-line tools focus on data collection, as fail-

ure reproduction is difficult. Tools like [1, 8, 13] help, but
can slow down programs significantly (over 100X [9]).
Reducing overhead requires either sacrificing detail (e.g.
by only tracing system calls [14]) or expensive, unde-
ployed hardware extensions [8, 13]. Regardless, users
don’t release such information due to privacy and con-
fidentiality concerns, and even if provided, such “raw”
data is time consuming to manually search for root
causes.

It would be desirable if diagnosis was automatically
conductedon-line as a software failure occurs, and if
only summarized diagnosis results were sent back. This
has several advantages:
(1) Leverage the failure environment and state. Since
such diagnosis is done right after a software failure, al-
most all program states (memory, file, etc.) and execu-
tion environment information (e.g. user inputs, thread
scheduling, etc.) are available, trivializing failure repro-
duction.
(2) Reduce programmer effort. Similar to the triage
system of medicine, software failure diagnosis couldau-
tomatefinding some useful clues (e.g. failure-triggering
inputs). This would significantly reduce programmer’s
effort. Of course, nobody expects paramedics to cure pa-
tients, nor software to fix bugs, but both can offload the
initial steps. Moreover,such automated diagnosis also
applies toin-house testing.
(3) Address users’ privacy concerns. If failure diag-
nosis is conductedon-lineat the user’s machine, private
data and execution traces need not be sent out. After
diagnosis, results (e.g. buggy instructions, root cause
candidates, triggering inputs, etc.) can be sent out in
a form more condensed and transparent to users than
core dumps or traces. Indeed, we feel that excluding
core dumps increases the amount of information pro-
grammer’s receive: if users are wary of core dumps, the
programmer will receive nothing.
(4) Guide failure recovery and avoid future failures.
Immediate and automatic diagnostic results would be
available in time to help failure recovery in subsequent
executions. For example, identifying failure-triggering
inputs allows such inputs to be filteredprior to a pro-
grammer creating a patch.

Although on-line diagnosis is clearly desirable, it faces

1



several challenges. First, normal execution overhead
must be low; users are unwilling to sacrifice much per-
formance for reliability. Second, on-line diagnosis man-
dates a lack of human guidance. All information collec-
tion, reasoning, and analysis must be automated. Finally,
diagnosis times must be short. End users are impatient,
and even if normal-run overhead is low, diagnosis time is
strictly limited.

1.1 Our Contributions

In this paper, we propose a system (the first, to the best of
our knowledge), forautomatic on-linediagnosis of soft-
ware failures that occur duringproduction runs. Specif-
ically, we address the above three challenges with two
innovative approaches:

(1) Capture the failure point and conduct just-in-
time failure diagnosis with checkpoint-re-execution
system support. Traditional techniques expend equal
monitoring and tracing effort throughout execution; this
is wasteful given that most production runs are failure-
free. Instead, by taking light-weight checkpoints dur-
ing execution and rolling back after a failure, diagnosis
must be done onlyafter a failure has occurred. Heavy-
weight code instrumentation and advanced analysis can
be repeatedly applied post-failure re-execution, minimiz-
ing normal-case overhead. In this scheme, the diagnostic
tools have most, if not all, failure-related information at
hand, while diagnosis is focused on the execution period
closest to the failure.In combination with system sup-
port for re-execution, heavy-weight tools become feasi-
ble for on-line diagnosis.

(2) A novel automated top-down human-like soft-
ware failure diagnosis protocol. We propose a frame-
work (see Figure 1 which assembles the manual debug-
ging process. This Triage Diagnosis Protocol (TDP)
takes over the role of humans in diagnosis. At each step,
known information is used to select the appropriate next
diagnostic technique. Within the framework, many dif-
ferent diagnosis techniques, such as core dump analysis,
bug detection, backward slicing, etc., may be integrated.
Additionally,using the results of past steps to guide and
as inputs to future steps increases their power and use-
fulness. In combination, these tools can potentially ex-
tract and deduce much useful information about a soft-
ware failure, including bug type and location, likely root
causes and fault propagation chains, failure triggering in-
puts, failure triggering execution environments, and even
provide potential temporary fixes (such as input filters).

2 Idea
The goal is to perform an initial diagnosis before report-
ing back to the programmers. This is similar to the triage
system used in medical practice: in case of emergency,

paramedics must perform the first steps: providing first
aid, sorting out which patients are most critical, measur-
ing vitals, etc. Similarly, given a software emergency (a
program failure), programmers cannot immediately be-
gin debugging. The immediate response must be pro-
vided by some pre-diagnosis tools to provide the pro-
grammer with useful clues for diagnosis.

To realize this goal, in light of the previously men-
tioned challenges, we innovatively combine several key,
novel ideas:
(1) Capture the moment of failure. When a program
fails, we have something valuable: the failure state and
failure-triggering environment. Rather than let this mo-
ment pass, we capture it and leverage it fully. Therefore,
unlike most previous approaches that pay high overhead
to record copious information (e.g. execution traces) to
reproducethe failure off-line, we propose to perform di-
agnosisimmediatelyafter the failure.
(2) Exploit sandboxed re-execution to reduce normal-run
overhead. Rather than instrumenting continuously, sys-
tem support for rollback and re-execution from a recent
checkpoint allows analysis onlyafter a failure has oc-
curred. This eliminates the “blind” collection of infor-
mation during normal runs to greatly reduce overhead–
instead this is deferred to after a failure. Also, failure
symptoms and the results of previous analysis can allow
a dynamicdetermination of what needs to be done. If
we already have evidence that the bug is probably deter-
ministic, a race detector is useless–without rollback the
instrumentation must be “always on” even for unrelated
bugs.
(3) Automatically perform human-like top-down failure
diagnosis. Inspired by manual debugging, the TDP pro-
vides a top-down failure-guided diagnosis. Based on the
failure symptom and previous diagnosis results, TDP au-
tomatically decides the next step of instrumentation or
analysis.
(4) Leverage various dynamic bug detection and fault lo-
calization techniques. The TDP, in combination with re-
execution, allows many existing (or future) bug detection
and fault isolation techniques to be applied. As proof
of concept, we prototype a memory bug detector and a
program backward slicer, both of which are dynamically
plugged in during re-execution via dynamic binary in-
strumentation. Although information from the very be-
ginning of execution is unavailable, working around this
requires only minimal modifications. The memory bug
detector synergistically provides input to the backward
slicer, resulting in accurate failure information.

2.1 Triage Diagnosis Protocol (TDP)
This section, and Figure 1, describe the human-like top-
down Triage Diagnosis Protocol. This is, of course, in-
complete. Debugging is something of an art; the TDP
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Figure 1: Diagnosis protocol (TDP) diagram(This is a sample illustration of the Triage diagnosis protocol using representative bug

detection and diagnosis techniques. Other techniques can easily plug into the Triage protocol and framework.)

is inspired by our own debugging processes, as well as
an attempt to order steps such that the results of earlier
stages are useful for later stages to consume (e.g. input
testing reduces the work of later stages). We expect that
further techniques and steps will be added.

Simple replay As our goal is to provide the ground-
work for a programmer to start debugging, we mimic
the initial step a programmer would follow: simply retry
the execution. This trivially distinguishes deterministic
and non-deterministic bugs. Since subsequent steps vary
drastically depending on the initial classification, this is
done first.

Core dump analysis Assuming a deterministic bug,
the next step analyzes the memory image at the time
of failure. This inexpensive step gives the crashing in-
struction and related variables–a starting point for further
analysis. Also, the consistency of the heap and stack can
identify some memory bugs.

Input testing The next step is input testing. First, this
identifies the failure-triggering input to avoid overload-
ing the programmer and subsequent TDP steps with ex-
traneous information. Second, this extracts signature of
the failure-triggering input. A programmer, given one
test case, will likely try to find the minimum input or the
particular request that triggers the failure[15]. The TDP
also does this, butautomaticallywith the support of re-
execution. An extra possibility is to build a temporary fix
by filtering bad inputs (prior to a patch release).

Dynamic memory bug detection After input testing
comes dynamic bug detection. This step is after core
dump analysis as it is slower and may be partially
skipped if the core dump report is clean. There are many
existing powerful bug detection tools programmers use–
they are not used in production runs due to the huge

overhead (up to 100X slowdowns [17]) potentially in-
volved. However, such tools can be dynamically plugged
in during re-execution, when overhead is no longer a ma-
jor concern. This step catches common bugs such as
buffer overflows, data races, double frees, etc. Both posi-
tive and negative results are useful for understanding the
failure—detecting no buffer overflow can avoid a wild
goose chase for non-existent buffer overflows.

Dynamic backward slicing From the previous diag-
nostic steps, we have a point along the fault-propagation
chain: the crashing instruction (from core dump analy-
sis) or a misbehaving instruction (from bug detection).
Commonly, a programmer will manually trace backward
with break- and watch-points. Dynamic backward slic-
ing automates this process. Previous work [8] shows that
fault propagation lengths tend to be short. A backward
slice of a faulty execution isolates the portions of the pro-
gram responsible for the failure, and the initial fault will
likely appear quite close to the starting point for the slice.

Delta analyzer The delta analyzer runs after the input
tester. If the input tester provides two similar runs, one
failing and the other not, the delta analyzer will compare
the execution paths and variable values in the two runs.
The comparison results can isolate buggy code regions
and abnormal variable values.

Non-deterministic bugs If the first step indicates a
non-deterministic bug, employing a race detector during
the re-execution is the second TDP step. Multi-processor
machines are difficult to support for deterministic replay;
it may take several exections to repeat conditions suffi-
ciently to trigger a race detector. In uni-processors, how-
ever, deterministic replay can easily replicate the race for
a race detector to find. After candidate races are identi-
fied, re-execution with schedule manipulations can ver-
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ify true positives and eliminate false positives. This also
gives a candidate thread interleaving to trigger the fail-
ure.

Report All of the analysis steps end in producing a re-
port. Different stages can be cross-correlated with each
other for ranking purposes, with more precise results
(e.g. memory bug detection vs. core dump analysis)
prioritized. The summary report gives the programmer
a comprehensive analysis of the failure, which is much
more useful than an ordinary bug report. Manual bug re-
ports tend to consist of a description of the symptoms,
plus some description of how the user triggered the bug;
symptoms can be misleading, and actually duplicating
a bug from these instructions is often difficult. Previ-
ous automatic “Send Error Report” tools send a collec-
tion of environmental data plus a core image; this still
doesn’t allow duplication of the bug, nor does it include
any information about what happened prior to the failure.
Our proposed reports are composed ofprocessedinfor-
mation about the failure, including the execution prior to
the failure itself. This gives the programmer information
that was previously unavailable, and does not require as
much manual inspection to understand.

Speculative techniques In addition to the above anal-
ysis, more speculative techniques can also be used. For
example, trying to skip potentially problematic code re-
gions or “forcing” variable values may help further iso-
late bugs.

Temporary fixes A final, optional step, is to attempt
to automatically fix the bug. This may be done by auto-
matically filtering bug-triggering inputs (as in [3, 6]) or
avoiding bug-triggering schedules or memory layout. If
the diagnosis is for a buffer overflow, such objects can
be allocated with large paddings (similar to our previous
work Rx [10] and others [2, 11]).

3 Experimental Results

In this section, we present preliminary results on a few
bugs (Table 1) by combining memory bug detection and
backward slicing. We also present performance results
showing the feasibility of production-run deployment.

3.1 Diagnosis Results Overview

Table 2 presents the results of combining memory bug
detection and backward slicing to diagnose bugs. For all
three of the bugs, the specific type of bug (heap-overflow,
stack-smashing, or null-pointer) is correctly identified.
Especially for BC and NCOMP, this is extra information
beyond what a core-dump would provide. Furthermore,
backward slicing from the initial fault reaches the root
cause instruction in 6 instructions or less.

Memory bug detection As shown in Table 2, the type
of bug is correctly determined for all 3 failures. Also,
in the case of BC and NCOMP, memory bug detection
provides a point along the fault propagation chain much
closer to the fault than the actual failure point. Heap and
stack overflows corrupt data without causing a failureat
that time. This points to a shortcoming of core-dumps–
the programmer may be able to tell that a heap or a stack
overflow occurred, but has no idea of where the overflow
happened. Also, for the NCOMP bug, the corruption of
the stack prevents simply walking back along the stack
activation records to trace the bug. Another benefit is
improving the later backward slicing. The more precise
point along the fault propagation chain reduces the size
of the propagation tree and reduces the time needed.

Fault propagation tree The backward slicer auto-
matically generates fault propagation trees. In all cases,
the root cause instruction appears in the top 6 candidate
instructions. For NCOMP and TAR, the faulting instruc-
tion is far from the failure point: for NCOMP, the root
cause is 70 source lines away from the stack overflow,
and for TAR, the fault is not even in the same source file
as the crash point. By tracing the flow of data and con-
trol, backward slicing eliminates much extraneous code.

3.2 Detailed bug study: TAR

NULL pointer dereference @ 0x4f0f1e13 in lib.strlen

return NULL; dirp = savedir(path) entry = dirp

entrylen = strlen(entry)

Table 3: Results for tar-1.13.25

As shown in Table 3, the failing instruction is a null
pointer dereference bystrlen . Unfortunately, mem-
ory bug detection only gives the failing point, and not
why the pointer is null. Backward slicing results bal-
ance the lack of information about the bug. As shown
in the fault tree of the report, the crashing code is
strlen(entry) , shown at the root of the tree. Trac-
ing backward along the tree, we will see that the argu-
mententry is returned fromsavedir . Additionally,
NULL is explicitly assigned to it in that function. Actu-
ally, if we look at the source line just above the NULL
assignment, we will see that this NULL assignment hap-
pens when anopendir call to the input directory fails.
Note that even though the fault tree is short and sim-
ple, it is difficult to get it without backward slicing. It
is impossible with just a core dump, because the func-
tion savedir has already returned and so the stack
frame is gone. Also, just looking at the source code is
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Name Program App Description #LOC Bug Type Root Cause Description

BC bc-1.06 interactive algebraic language17K Heap Buffer OverflowUsing wrong variable in for-loop end-condition
NCOMP ncompress-4.2.4 file (de)compression 1.9K Stack Smash Fixed-length array can not hold long input file name
TAR tar-1.13.25 GNU tar archive tool 27K Semantic (NULL ptr)Directory property corner case is not well handled

Table 1: Bugs tested
Name Result Quality Technique Results from each step Fault (Propagation) Tree

BC

Root cause Mem-Bug Found 1 heap-overflow @0x804ee82
in top 3 Detection

Backward Start from 0x804ee82
Correct Slicing Found root cause (RANK = 3)
fault tree

NCOMP

Root cause Mem-Bug Found 1 stack-smash @0x45ba7460
in top 6 Detection (called bycomprexx)

Correct Backward Start from 0x45ba7460–comprexx
fault tree Slicing Found root cause (RANK = 6 )

TAR

Root cause Mem-Bug Null pointer dereference
in top 5 Detection @0x4f0f1e13 (lib.strlen)
Correct
fault tree Backward Start from 0x4f0f1e13

Slicing Found root cause (RANK = 5)

Table 2: Preliminary diagnosis results.(Fault trees are built in slicing step based on previous steps’ result for deterministic failures.)

also not easy, because the code crosses different files and
get directory contents is a large function.

3.3 Overhead
Normal-Run Since we rely on checkpoint and roll-
back to allow deferring complex instrumentation, there
must be some overhead during normal execution. We
measure two applications, Squid (network bound) and
BC (CPU bound). Squid achieves 98.7% of the base-
line throughput (92.5 Mbps vs 93.7 Mbps). BC achieves
99.2% of the baseline performance (53.2 seconds vs 52.8
seconds). Overhead comes from initiating the check-
points, copy-on-write page faults, and (for Squid) copy-
ing/forwarding requests. Since the checkpoint/rollback
is based on the same framework as in our previous Rx
work, normal execution overhead is similar [10]. Check-
points are in-memory using a shadow-fork() operation;
since we do not need to keep many checkpoints, or keep
them for long, the high overhead of writing checkpoints
to disk is avoided. Given such low overhead, we can have
the analysis tools standing by without hurting normal ex-
ecution. In contrast, more traditional dynamic tools, such
as Purify [5], impose significant overhead throughout the
whole execution.

Total Mem.-Bug Backward
Time Detection Slicing

303 sec 98 sec 205 sec

Table 4: BC failure diagnosis time

Diagnosis overhead The diagnosis tools are efficient.
We present results for BC, which is a highly CPU-bound
application (a worst case for our tools). Despite this, the
total diagnosis time (including time to rollback) is just

over 5 minutes. Among the two components, backward
slicing takes the longest time, because it updates register
and memory dependencies foreveryinstruction. Back-
ward slicing imposes up to 1000x overhead–completely
infeasible to deploy full-time. Also, since BC is entirely
CPU bound, everything it does must be traced and ana-
lyzed. For IO bound applications (i.e. servers) far fewer
instructions would complete, with subsequent reductions
in diagnosis time.

We should note that it is possible for diagnosis to pro-
ceed in the background, while recovery and return to
normal service is performed in the foreground. Our im-
plementation supports background diagnosis; we did not
do so in order to provide isolated performance numbers
for diagnosis. If ordinary activities continue in the fore-
ground, diagnosis will take longer.

4 Conclusions and Future Work
This paper presents an innovative approach for diagnos-
ing software failures. By leveraging lightweight check-
point and re-execution techniques, we can capture the
moment of a failure, andautomaticallyperform just-in-
time diagnosis at the end user’s site. Additionally, we
propose (the first to our knowledge) afailure diagnosis
protocol, which mimics the debugging process a human
programmer would take. This is well-suited to automatic
on-line diagnosisandalso helpful in in-house testing and
debugging. By offloading the initial steps, it frees pro-
grammers from some of the labor of debugging.

While the TDP provides an important first step toward
on-line failure diagnosis, there is, of course, more work
to be done. Currently we are implementing further steps
in the TDP, such as race detection, input analysis, etc.
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We continue to explore the possibilities for more specu-
lative tools. To further quantify the usefulness of the re-
sults, we intend to measure the reduction in debugging
time when compared to core dumps and user descrip-
tions. Finally, we are considering the potential of the
TDP to be extended to support distributed applications.
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