
Speculations: Providing Fault-tolerance and Recoverability in Distributed
Environments

Cristian Ţ̆apuş
California Institute of Technology

crt@cs.caltech.edu

Jason Hickey
California Institute of Technology

jyh@cs.caltech.edu

1 Introduction

Building safe and reliable programs is an important but
difficult endeavor. The challenge is even greater in the
context of distributed environments, which may involve
complex synchronization operations in the presence of
process and network failures.

Transactions are one of the earliest and simplest ab-
stractions for reliable concurrent programming [2]. They
provide fault-isolation by guaranteeing the atomicity, the
consistency and the durability of the actions performed
as part of the transaction. Traditional transactions also
provide isolation, which prevents the independent ac-
tions inside of a transaction from being visible to the out-
side world until the transaction either aborts or commits.

In this paper we consider the case where multiple pro-
cesses may cooperate in a transaction, using message
passing for communication. We relax the transactional
isolation property to permit inter-process communication
while executing inside the transaction. This model can
improve performance and provide fault-tolerance for dis-
tributed applications. We call these transactions with re-
laxed isolationspeculations, and we introduce them as
programming language primitives.

Traditional checkpointing and rollback mechanisms
used to provide recoverability are also similar to our ap-
proach. However, there are a few differences, as follows.
Speculations can provide programs with alternate execu-
tion paths upon rollback. Speculations are lightweight
checkpoints that are stored in memory and can be cou-
pled with real checkpointing mechanism for increased
reliability. Speculations are exposed as programming
language primitives that have a semantics closer to that
of transactions than that of checkpoints. Our system
adapts mechanisms designed for checkpointing/rollback
systems [1] to ensure safe recovery lines in case of dis-
tributed speculation rollback.

While speculations are similar to the concept of
lookahead-rollback introduced by the TimeWarp [3]

mechanism, we extend the concept by allowing both
explicit and implicit speculations through programming
language extensions.

The main contributions of this paper include: (1) the
introduction of a new programming model based on
speculations, (2) the definition of new speculative pro-
gramming language constructs for distributed applica-
tions, (3) the description of a prototype implementation
of speculations in the Linux kernel where speculative op-
erations, including distributed commit and rollback, are
transparent.

2 Speculations

We define aspeculationto be a computation that is based
on an assumption whose verification may be delayed. We
introduce three primitives for defining speculative execu-
tion. Speculatedefines the entry point of a speculation.
Commitmarks the validation of the assumption on which
the speculation is based on and the program continues
execution as expected.Abort is used when the assump-
tion on which the speculation is based is invalidated and
the computation needs to be rolled back. In this case, the
process is rolled back to the state it was in before enter-
ing the speculation and a different path of execution may
be taken.

The three functions described above have the follow-
ing types associated with them.

speculate : void→ int
abort : void→⊥
commit : void→ void

The speculate function returns an integer, where the
integer is zero when the speculate function is first called,
and non-zero if the speculation is later rolled-back. We
call thecommit branchthe execution that follows after
an initial speculatecall until either anabort or acommit
call are encountered. If the speculation is aborted during
the speculative execution the process is rolled back to the
state it had when the speculate call was executed, and a

1



non-zero value is returned. In this case, the program may
take an alternate execution path, as if it never executed on
thecommit branch. We call the code executed in this case
theabort branch. Theabort and thecommitcalls do not
take any parameters, and conceptually, they don’t return
a value. Their main purpose is to guide the flow of the
speculative program. Thus, speculations have dynamic
scoping, based on when theabort or commit functions
are called.

Speculative message passing enables speculative par-
allel computation and provides mechanisms for dis-
tributed rollback and commit. One of the key proper-
ties of distributed speculations is that the outcome of the
speculation can only be decided by its owner (the pro-
cess that started it). This semantics prevents unnecessary
rollbacks if any of the other processes involved in the
speculation fails. The semantics is sound and performs
as expected in all common cases.

Since actions performed inside a speculation are not
isolated, other processes can become implicitly specula-
tive if they base their computation on a speculative mes-
sage. Thus, speculations extend the traditional language-
supported exception mechanisms to distributed environ-
ments by forcing implicitly speculative processes to roll
back along with the initiator of the speculation. This
component is one of the contributions of this model.

3 Implementation overview

We have implemented speculations as an extension to the
Linux kernel (version 2.6). Our system is based on a
strong formal operational semantics [4] which increases
the confidence in our implementation.

Speculative primitives. The speculative primi-
tive speculate, abort, and commit are implemented as
three new system calls:speculate(), specabort(), and
speccommit().

Starting a speculation. When a user process en-
ters a new speculation, by calling thespeculate()call,
a lightweight checkpoint is created using thefork() sys-
tem call with special parameters that create a new process
with the same PID and the copy-on-write mechanism as-
sociated with fork. The new process corresponds to the
abort branch of the speculation and is not executed unless
the speculation is aborted.

Committing a speculation. When a speculative pro-
cess that has started a speculation calls thespeccommit()
system call it triggers two actions. The process discards
the local lightweight checkpoint if it is the sole owner
of the speculation. If the speculation is co-owned and
the other owners have not decided the outcome of the
speculation the process becomes implicitly speculative
and continues execution. If the process is the last owner
to decide the outcome of the speculation it broadcasts a

COMMIT message through publish/subscribe channels
to all processes that belong to the speculation. Upon re-
ceiving the COMMIT message lightweight checkpoints
are discarded and execution continues on the same path.

Aborting a speculation. A speculation is aborted
when the initiator executes thespecabort() call. This
triggers the broadcast of an ABORT message to the cor-
responding speculative group and it rolls back the pro-
cess by reviving theabort branchcreated upon specu-
lating. The recipients of the ABORT message roll back
their computations as well.

Sending a speculative message.Messages sent by
a speculative process are tagged with a new IP option
(IPOPTSPEC). This approach is non-invasive as far as
the sending and receiving of messages are concerned.

Receiving a speculative message.Receiving and pro-
cessing speculative messages required several modifica-
tions in the kernel network stack. The IPOPTSPEC op-
tion needs to be processed and its associated informa-
tion is pushed to the transport layer. This information is
used to force the receiver of a speculative message to join
the speculation in an implicit manner only when the data
contained in the message is passed on to the user-level.

Entering, committing or aborting an implicit specula-
tions are completely transparent to the process that has
been absorbed in it. When the kernel receives notifica-
tion on the outcome of a speculation it either automat-
ically rolls back the processes that are involved in the
speculation or it discards the saved checkpoints.

4 Future Work

We are currently investigating support for nested specu-
lations inside the Linux kernel and we are developing a
distributed filesystem with support for speculations, i.e.
supporting rollback of files and supporting speculation
propagation through files.

Full speculative support at the operating system level
would allow us to develop efficient, optimistic com-
munication protocols and new distributed software de-
bugging tools that combine speculative execution with
model checking and distributed logging mechanisms.

References

[1] DAMANI , O. P.,AND GARG, V. K. How to recover efficiently and
asynchronously when optimism fails. InInternational Conference
on Distributed Computing Systems(1996), pp. 108–115.1

[2] GRAY, J., AND REUTER, A. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1994.1

[3] JEFFERSON, D. R. Virtual time.ACM Trans. Program. Lang. Syst.
7, 3 (1985), 404–425.1

[4] ŢĂPUŞ, C. Distributed Speculations: Providing Fault-tolerance
and Improving Performance. PhD thesis, California Institute of
Technology, Pasadena, CA, June 2006.3

2


