
Static Analysis Meets Distributed Fault-Tolerance:
Enabling State-Machine Replicationwith Nondeterminism*

Joseph G. Slember and Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Midas is an inter-disciplinary approach to support-
ing state-machine replication for nondeterminis-
tic distributed applications. The approach exploits
compile-time static analysis to identify both first-hand
and second-hand sources of nondeterminism. Subse-
quent runtime compensation occurs through either
the transfer of nondeterministic checkpoints or the re-
execution of inserted code, and restores consistency
among replicas before each new client request. The ap-
proach avoids the need for lock-step synchroniza-
tion and leverages application-level insight to address
only the nondeterminism that matters. Our prelimi-
nary evaluation demonstrates Midas’ feasibility and
current performance overheads.

1. Introduction
State-machine replication [11] has long been used for
providing fault-tolerance for servers; here, every server
replica receives, performs, and responds to, every client
request. One advantage of state-machine replication is its
failure-masking, i.e., if a replica fails while processinga
client’s request, another actively functioning replica isei-
ther processing or will process the same request, hiding
the failure from the client. Thus, state-machine replica-
tion is often used for rapid recovery.

State-machine replication requires deterministic ap-
plication behavior. This means that any two server repli-
cas, when starting from the same initial state and exe-
cuting the same ordered sequence of operations, should
reach the same final state and produce the same output.

Nondeterminism can arise from various sources,
such as local timers, multithreading, system calls,
etc. When nondeterminism is present in servers that
use state-machine replication for fault-tolerance, the
server replicas can diverge in state. The resulting in-
consistency defeats the purpose of replication as a
fault-tolerance strategy. However, many real-world ap-
plications inevitably contain nondeterminism. Thus,

* Partially supported by the NSF CAREER grant CCR-0238381 and
the ARO grant number DAAD19-02-1-0389

state-machine replication is precluded for these applica-
tions, even if their availability/recovery requirements are
demanding.

Many research efforts [2, 3, 4, 5, 6, 7, 8, 9, 12] have
focused on addressing nondeterminism for state-machine
and other types of replication. A common strategy is to
use transparent, lock-step synchronization. The idea is
that every time a server replica executes a nondeterminis-
tic call, the replica is effectively paused until the resultof
the call is synchronized across all of the running replicas.
This ensures consistent state across all of the server repli-
cas throughout their execution. A transparent approach
results because the layer that intercepts every nondeter-
ministic call to perform the synchronization is often at
the virtual-machine, middleware or OS level, and the ap-
plication is unaware of the existence of this layer.

We have previously developed such an approach [10],
and learned some lessons in the process. Transparency,
while attractive to application programmers, is not really
ideal for handling nondeterminism because (i) not every
nondeterministic call actually materializes into replica
divergence (we provide examples later), and (ii) a trans-
parent layer cannot identify second-hand nondetermin-
ism that arises when the results of (first-hand) nondeter-
ministic calls “taint” otherwise deterministic code. In ad-
dition, lock-step synchronization has a performance cost,
by requiring all of the replicas to virtually cease opera-
tion until they reach consensus on a result.

With these insights, we developed a new approach
called Midas. There are two primary questions that drive
our design and implementation of Midas. Can we lever-
age application-level knowledge in a manner that facil-
itates the accurate handling of (first- and second-hand)
nondeterminism? Can we provide effectively consistent
state-machine replication by asynchronously handling all
of the detected sources of nondeterminism, so that repli-
cas are free to operate independently and use nondeter-
ministic features, without needing to forcibly synchro-
nize with each other?

2. Midas in a Nutshell
Midas is a deliberately non-transparent approach to han-
dling nondeterminism in distributed, replicated applica-

tions. By exploiting techniques from the field of static
analysis, we are able to extract and leverage application-
level information about the origin, the propagation and
the impact of nondeterminism. The static analysis, to-
gether with an automated instrumentation framework, al-
lows us to insert “compensation” code for the detected,
relevant sources of nondeterminism. This compensation
(described later) effectively supports state-machine repli-
cation by allowing replicas to asynchronously render
themselves consistent with each other, at runtime, prior
to handling every new client request.

Midas imposes some requirements in its approach.
First, compiler-based techniques such as static analysis
require access to source code. However, they have the ad-
vantage of being able to extract information from source-
code that would be lost to a transparent approach. Sec-
ondly, we currently require totally-ordered reliable mul-
ticast to communicate every message to each group of
server replicas. Thus, all of the replicas of a server will
receive the same set of messages in the same order, even
if they produce different results on processing these mes-
sages. We do not limit the kinds of nondeterminism that
the application can exhibit, and do not require special
middleware, virtual-machine or OS support.

We aim to relax the requirement of determinism for
distributed applications that wish to use state-machine
replication, and show how an inter-disciplinary approach
(applying static analysis to distributed fault-tolerance)
can achieve that goal.

3. Design and Implementation

3.1. Kinds of Nondeterminism
Control-flow nondeterminismis due to any path of ex-
ecution within the application that is not deterministic,
and primarily arises from multithreading, exceptions and
signals.Interaction nondeterminismis due to the appli-
cation’s interaction with the system/environment via sys-
tem/library calls, e.g., those dealing with file-system I/O
and memory interaction.

We also distinguish between actual and superficial
nondeterminism. For example, if agettimeofday
call is executed, and its results are stored in a state vari-
able, that variable constitutes actual nondeterminism. If
the results of the call are not stored but discarded (say,
after printing them to screen), then, that instance of
gettimeofday does not need to be consistent across
server replicas; this is referred to as superficial nondeter-
minism. A transparent approach would necessarily ad-
dress every occurrence, superficial or actual, of a non-
deterministic call. On the other hand, static analysis of
the application can focus our attention on the interest-
ing (i.e., the actual) nondeterminism.

First-hand, or pure, nondeterminism refers to any ex-
ecution or state that is the direct/root source of non-

determinism, e.g., an instance ofgettimeofday.
Because multithreading can introduce nondetermin-
ism, shared state among threads is also considered as
first-hand nondeterminism. Multithreading can arise
when a server requires multiple threads to process a sin-
gle request. However, even if a server requires only
one thread to process a single client’s request, the si-
multaneous processing of multiple clients can lead to
multithreading.

Second-hand, or contaminated, nondetermin-
ism refers to any execution or state that is “touched”
by pure nondeterminism or other second-hand non-
determinism. Contamination occurs if a nondetermin-
istic value (say, variablea) propagates due to depen-
dencies (e.g.,b = f(a)), thereby rendering other
variables or state (in this case,b) nondeterminis-
tic, even if the latter were deterministic left to them-
selves. In multi-tier applications (where one server
plays the role of a client for another server tier), re-
quests and replies between server tiers can serve as
“carriers” of nondeterminism.

The tracking of contamination requires application-
level information about first-hand nondeterministic
sources and how they influence other application state
through dependencies, requests and replies. Static anal-
ysis can help to pinpoint first-hand nondeterminism as
well as track second-hand nondeterminism.

3.2. Static-Analysis Framework
Midas’ program-analysis framework comprises the
front-end of a compiler coupled with a source-code re-
generator. The custom framework, written from scratch,
converts C/C++ source-code into an annotated ab-
stract syntax tree (AST), performs several analytical
passes over the tree, automatically generates and in-
serts code snippets and, finally, outputs source-code.

Our framework identifies first-hand sources of
control-flow and interaction nondeterminism within the
application. For interaction nondeterminism, Midas an-
alyzes the application’s source-code, seeking out in-
stances of items in our “nondeterminism-dictionary”,
currently consisting of (i) 262 system calls, includ-
ing read, write, gettimeofday, etc., and (ii) 163
library functions within the C/C++ standard I/O, mem-
ory and machine-dependent OS libraries.

Apart from seeking out these system calls and li-
brary routines, Midas performs a comprehensive search
for any additional sources of first-hand nondeterminism
that might not exist in our dictionary. To this end, our
framework extracts all function calls from the applica-
tion, and processes this list in four steps. (1) All of the
application-defined functions (i.e., neither system calls
nor library routines) are carefully removed from this list.
Some application-level defined functions might be added

later for consideration if control-flow analysis reveals
their potential for nondeterminism. (2) All of the matches
between this list and our dictionary are discarded since
they are known to be nondeterministic. (3) All of the
functions in this list that are dependent on (i.e., contam-
inated second-hand by) functions in our dictionary are
added to our dictionary and also removed from the list;
an example isfread, which invokes the nondetermin-
istic read call, resulting in second-hand nondetermin-
ism. (4) What is left of the list at this point are functions
whose potential for nondeterminism we must ascertain
manually, by examining the source-code for those func-
tions. If these functions are found to be nondeterministic
by inspection, we add them to our dictionary.

To identify control-flow nondeterminism, Midas ex-
tracts all shared state between threads automatically1. All
of the reads and writes made by each thread to this shared
state are also flagged as first-hand nondeterminism. In-
stead of forcing the deterministic acquisition of mutexes
and the identical execution of threads across server repli-
cas, we assume that all interleaving/executions of threads
are valid; we then compensate for any resulting replica
divergence after the fact.

Midas then performs control-flow and data-flow anal-
yses on the application source-code (this includes the
joint analysis of the client and the server code, to cover
the distributed contamination of nondeterminism). The
analyses produce a list of inter-dependencies of state
variables within the application, depending on the con-
trol path that is chosen. This control-path-specific depen-
dency list allows us to identify all second-hand nondeter-
minism within the application; for example, if all writes
to an inter-thread state variablex constitute first-hand
nondeterminism, then, the analyses determine what other
state within the application is contaminated byx. At the
end of this phase, Midas has identified every piece of
both first- and second-hand nondeterminism within each
server of the distributed application.

3.3. Compensation Techniques
Midas performs two kinds of annotations to the applica-
tion source-code to track, and compensate for, the nonde-
terminism at runtime. (1) The first set of annotations con-
sists of data structures for holding nondeterministic in-
formation at runtime. For instance, Midas inserts thread-
specific arrays to track each thread’s order of execution
and the thread’s modification to any inter-thread, shared
state. (2) The second set of annotations consists of code-
snippets that can recreate the second-hand nondetermin-
ism at a server, if provided the first-hand nondeterminis-
tic variables as input. For instance, if a variablex is writ-

1 If dynamic pointers are used to access state, we need to enhance
Midas with off-the-shelf packages to assist in the analysis.

ten to by a thread and three other state variables are sub-
sequently contaminated byx, Midas can create and in-
sert a new function that takesx as input, and re-executes
code to recreate the values of the three contaminated non-
deterministic variables. We explain how (1) and (2) com-
pensate for nondeterminism, without requiring lock-step
synchronization across replicas.

Midas employs two kinds of compensation tech-
niques: checkpointing and re-execution. In both cases,
the replicas do not need to block or wait on each other be-
fore executing requests. All of the replicas of a server
are rendered consistent, in an asynchronous manner, be-
fore processing each client request.

We use a multi-tier example, clientC � serverS1

� serverS2 � ..., to illustrate our compensation tech-
niques. A→ denotes a downstream request while a←
denotes an upstream reply. We focus on the callerS1

and the calleeS2 in the following discussion on inter-tier
compensation.

Checkpoint-to-compensate (transfer-contam):
In this case, the information from the annotations in
(1) is used. Within eachS2 replica, both the first-
and second-hand nondeterminism are locally tracked
and stored (we call this a nondeterministic check-
point). EachS2 replica returns its response toS1, pig-
gybacking its nondeterministic checkpoint. Due to
state-machine replication, everyS2 replica trans-
mits its response toS1. On its end,S1 chooses the
first-received response from theS2 replicas and pro-
cesses it, discarding the remaining responses. Because
of the underlying totally ordered protocol, ifS1 is repli-
cated, eachS1 replica will choose the sameS2 replica.
S1 notes its choice of theS2 replica (the chosenS2

replica can differ from one request to the next) and ini-
tiates an asynchronous callback to each of theS2 repli-
cas, passing along its choice of theS2 replica and
that replica’s nondeterministic checkpoint. The call-
back has no effect at the chosenS2 replica; the other
S2 replicas overwrite their own nondeterministic check-
point with the one received in the callback.

Reexcute-to-compensate (reexec-contam): Here,
we use the information from the annotations in (1)
and (2). EachS2 replica piggybacks only its first-
hand nondeterminism in its response toS1. As with
transfer-contam, S1 chooses anS2 replica,
and piggybacks that replica’s first-hand nondetermin-
ism in its callback to theS2 replicas. The chosenS2

replica is unaffected; the otherS2 replicas overwrite
their own first-hand nondeterminism with the one re-
ceived in the callback, and then recreate the second-hand
nondeterminism by re-executing the code in (2).

Additional Intricacies. After processing the call-
back, all of the server/callee replicas are consistent

once more in their first- and second-hand nondetermin-
ism, and ready to process the next request. In a multi-tier
application, inter-tier compensation can occur concur-
rently with the end-to-end operation. In the example,
S1 could issue and complete a compensation call-
back to S2, while C is still processing the response
returned fromS1.

Midas employs the notion of forward and backward
callbacks to handle nondeterminism contamination that
occurs due to requests (i.e.,C → S1 → S2 →) and
replies (i.e.,C ← S1 ← S2 ←), respectively. For in-
stance, in the midst of processing a request fromC, an
S1 server replica might issue a downstream request toS2,
wait forS2’s response to arrive, process the incoming re-
sponse, and then respond, in its turn, toC. Forward non-
determinism atS1 is any nondeterminism due to the pro-
cessing that occurs atS1 after it receivesC ’s request, but
before it issues its own request toS2. Similarly, back-
ward nondeterminism atS1 ensues during any process-
ing after it receivesS2’s response, but before it responds
to C. Both forward and backward nondeterminism need
to be addressed. Using Midas, the downstream tier (S2)
issues a forward callback toS1 to compensate for the
forward nondeterminism, while the upstream tier (C) is-
sues a backward callback to compensate for the back-
ward nondeterminism.

There are several intricate details that we omit here
for lack of space. One such detail is the level of concur-
rency and dependency analysis that Midas performs on
the application source-code to determine the causal re-
lationships between forward requests and backward re-
sponses at each tier, as well as the ensuing forward and
backward nondeterministic state.

We emphasize that, while the annotations in (1) and
(2) do modify the original application source-code, they
do not alter the functionality or the semantics expected
of the servers, and they do not introduce any nondeter-
minism of their own. The annotations consist mostly of
data structures for tracking and holding nondeterminis-
tic information at runtime. Even the re-execution code
that Midas adds is deterministic, although it takes a non-
deterministic input. Thus, we allow every server replica
to continue to be nondeterministic, just as the applica-
tion programmer had intended, but exploit Midas to re-
store consistency asynchronously before each new client
request is processed in the system.

The use of the transfer-contam vs.
reexec-contam techniques depends on the rela-
tive costs of transferring a nondeterministic checkpoint
(consisting of both first- and second-hand nondeter-
minism) vs. re-executing to regenerate the second-hand
nondeterminism. The main difference in the two tech-
niques is the types of overhead incurred. The overhead
of reexec-contam, arises predominantly from com-

putational costs, while that oftransfer-contam
arises from increased communication. Application pro-
grammers can choose which technique to use based
on their needs and application characteristics [1].
If communication overhead is not a significant is-
sue, the transfer-contam is preferable, while
reexec-contam might be a better option if computa-
tional time is readily available.

4. Preliminary Evaluation
We evaluated Midas’ implementation and compensation
techniques using variations of a basic multi-tier, multi-
client, micro-benchmark application on Emulab. Each
server tier performs the same amount of processing,
and each client has identical functionality. Every server
replica and every client is located on a different Pen-
tium III, 850MHz machine with 256MB RAM running
TimeSys Linux 2.4 over a 100 Mbps LAN. The applica-
tion is multithreaded with shared state across threads and
uses nondeterministic system calls (e.g.random()); we
can also vary the amount of forward and backward non-
determinism. Our goal with this microbenchmark is to
show the performance and feasibility of our approach
with respect to the number of clients and the number of
replicated tiers. We varied our experimental configura-
tions to change (i) the number of clients to 2 and 4, (ii)
the number of tiers to 2 and 4, (iii) the forward nondeter-
minism to 5% and 60% of the total state within the tier,
(iv) the backward nondeterminism to 5% and 60% of the
total state within the tier, and (v) the compensation tech-
niques,reexec-contam or transfer-contam.

We implement atransfer-ckpt technique, sim-
ilar to transfer-contam, that transfers the entire
state (deterministic and nondeterministic) of the server
replica. In the baselinevanilla case, replicas are al-
lowed to remain nondeterministic and no compensation
is involved. The metric that we use for evaluation is
round-trip time as measured at a client. For each config-
uration, we compute the average round-trip time across
all the clients for 300 end-to-end invocations/client.

The “total state” of a tier is represented by two arrays
(one forward and one backward) of 10,000longs each.
x% forward nondeterminism andy% backward nonde-
terminism mean thatx% of the forward array is nondeter-
ministic on the forward request-path andy% of the back-
ward array is nondeterministic on the backward reply-
path. The backward state depends on the forward state if
the latter is accessed by the incoming/backward reply.

We have two major sources of nondeterminism: multi-
threading with shared state and nondeterministic system
calls. By changing the amount of overlapping state across
threads, we vary the amount of first-hand nondetermin-
ism. Changing the amount of state modified by a first-
hand nondeterministic system call can vary the amount

of second-hand nondeterminism. These two sources of
nondeterminism are split equally for the purposes of in-
troducing varying amounts of nondeterminism in our
micro-benchmark’s experimental configurations. There-
fore, if 60% of the total state is nondeterministic, 30% of
state is first-hand nondeterministic and shared across the
threads, and 30% of state is due to second-hand nonde-
terminism.

Results. Figures 1(b) and 1(a) show Midas’ perfor-
mance for a fixed 4 replicas/tier and a varying number of
clients. The workload across the tiers doubles when the
number of clients doubles, as seen by the linear increase
in round-trip time for the 4-tier case in Figure 1(b).

Our evaluation is performed for low (5%) and signifi-
cant (60%) amounts of both forward and backward non-
determinism within the application. Clearly, the lower
the amount of nondeterminism within the application,
the less the compensation work to be done and the lower
the overheads, as seen in the 5% nondeterminism case
in Figure 1(a). Even in this case, thetransfer-ckpt
case stands out, particularly for the 4-tier situation, be-
cause of the significant amount of deterministic state that
constitutes each checkpoint; the nondeterministic por-
tion of the checkpoint does not contribute significantly to
the overheads, as seen intransfer-contam in Fig-
ure 1(a). Note also that, regardless of the number of tiers
and the % of nondeterminism, more clients imply higher
latencies because more work results from all of the ac-
companying interleaving and callbacks.

Figure 1(b) shows that Midas can handle even
highly nondeterministic applications, albeit with ex-
pectedly larger overheads for all of the compensa-
tion techniques because of the additional work in coping
with the increased nondeterminism.transfer-ckpt
still tops the chart because of the amount of state
that constitutes an entire checkpoint. For an applica-
tion with lower cost for state-transfer and higher cost for
re-execution, we might expectreexec-contam to ex-
hibit higher overheads.

5. Midas for a Transparent Approach
We view Midas’ operation as two separate phases. The
first phase is the initial program analysis that Midas per-
forms on the application source-code to determine non-
deterministic attributes. Midas then implements compen-
sation techniques to address the detected nondetermin-
ism. While it is clear that the synergy of the program
analysis and the subsequent compensation effectively ac-
complish our goals, Midas’ need to access and modify
application source-code might be viewed as disadvanta-
geous, if not outright impossible in some cases.

Even if a transparent nondeterminism-compensation
approach is to be used, thereby avoiding source-code
modifications, Midas’ program-analysis phase can be

useful. The main purpose of Midas’ program analysis
is to differentiate between the actual nondeterminism
that causes replica divergence and the superficial non-
determinism that does not matter. Many transparent ap-
proaches will inevitably over-compensate by addressing
even any superficial nondeterminism in the application.
However, the results of Midas’ analysis of the application
source-code could be fed into a transparent approach.
In other words, even a transparent approach to handling
nondeterminism might be improved with application-
level knowledge. This improvement can be seen in the
form of increased efficiency in several ways.

For instance, a significant amount of nondetermin-
ism is often due to multithreading. Although the threads
might share data, Midas’ analysis can determine whether
or not the threads interfere with each other in a way that
the replicas diverge in state. Armed with this informa-
tion, a transparent approach can simply ignore thread in-
teractions that will not cause replica divergence. With-
out this application-level information, a transparent ap-
proach would likely attempt to intercept and compensate
for all thread interactions, regardless of their impact on
replica consistency. Thus, even a transparent approach
stands to benefit from Midas’ program analysis ahead of
deployment, although the approach might employ other
compensation mechanisms at runtime.

6. Looking Forward

Our work in this paper was not an exercise in optimiza-
tion, but a demonstration of the feasibility of supporting
state-machine replication with nondeterminism in multi-
tier, multi-client distributed applications, where nonde-
terminism might propagate in a rampant way. There are
many performance enhancements that we can make to
Midas to reduce its runtime compensation overheads.
We could vary other application-level characteristics –
request size, state size, processing time, inter-request
latency – to complete our evaluation. Also, much of
our technique is based on static analysis. We intend
to incorporate dynamic-analysis techniques to gain any
application-level information that is beyond the scope of
static analysis.

6.1. Other Replication Styles
Passive, or primary-backup, replication is often hailed as
the solution to alleviate the difficulties posed by state-
machine replication for nondeterministic applications.
With passive replication, a designated primary/leader
replica processes all of the requests and replies, and syn-
chronizes itself with its backup replicas by sending them
periodic checkpoints of its state.

Without application-level insight, even passive repli-
cation cannot handle nondeterminism in multi-tier,
multi-client, distributed applications. Given the possi-

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

A
v

er
a

g
e

R
o

u
n

d
-T

ri
p

 T
im

e
(m

ic
ro

se
co

n
d

s)

Compensation Technique

2 Clients

4 Clients

2-Tier Case

4-Tier Case

(a) Low (5%) forward & backward nondeterminism

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

transfer-

ckpt
transfer-

contam
reexec-

contam
vanilla

0

100000

200000

300000

400000

500000

600000

700000

A
v
er

a
g
e

R
o
u

n
d

-T
ri

p
 T

im
e

(m
ic

ro
se

co
n

d
s)

Compensation Technique

2 Clients

4 Clients

2-Tier Case

4-Tier Case

(b) Significant (60%) forward & backward nondeterminism

Figure 1. Overhead for compensation techniques for varying number of clients.

ble propagation of nondeterminism through inter-tier de-
pendencies, checkpoints cannot necessarily be taken
independently at the primary replica of any tier with-
out sufficient consideration of the remaining tiers in the
system. Also, without the due analysis of inter-tier com-
munication and cross-invocation dependencies, only one
end-to-end operation can be performed at any time in
the system; all of the tiers would need to be blocked un-
til an ongoing end-to-end operation completes.

We intend to investigate how Midas can benefit even
passive replication schemes through its program analy-
sis. The objective would be to exploit application-level
information to support passive replication in multi-tier,
multi-client nondeterministic applications without com-
promising replica consistency or sacrificing concurrency.

7. Conclusion
Midas supports the state-machine replication of non-
deterministic distributed applications. The approach in-
volves a synergistic combination of compile-time depen-
dency, concurrency and nondeterminism analyses, along
with different performance-sensitive techniques to com-
pensate for the nondeterminism at runtime. The com-
pensation involves asynchronous callbacks that let repli-
cas continue to execute nondeterministic calls, but that
reconcile them prior to processing every client request,
without requiring lock-step synchronization. Our prelim-
inary evaluation demonstrates Midas’ feasibility and cur-
rent performance overheads.

References
[1] J. G. Slember and P. Narasimhan. Living with nondeter-

minism in replicated middleware systems,ACM/IFIP Con-
ference on Middleware, Melbourne, Australia, Nov 2006.

[2] L. Alvisi and J. Napper. A transparent fault tolerant Java
Virtual Machine, IEEE Conference on Dependable Sys-

tems and Networks, San Francisco, CA, June 2003, pp.
425–434.

[3] R. Friedman and A. Kama. Transparent fault-tolerant Java
Virtual Machine,IEEE Symposium on Reliable Distributed
Systems, Florence, Italy, Oct 2003, pp. 319–328.

[4] L. Alvisi, E. Elnozahy, Y. M. Wang and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing
systems, ACM Computing Surveys, vol. 34, no. 3, Sept
2002, pp. 375–408.

[5] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme and G.
Alonso. MIDDLE-R: Consistent database replication at the
middleware level, ACM Transactions on Computer Sys-
tems., vol. 23, no. 4, Nov 2005, pp. 375–423.

[6] C. Basile, Z. Kalbarczyk and R. Iyer. A preemptive deter-
ministic scheduling algorithm for multithreaded replicas,
IEEE Conference on Dependable Systems and Networks,
San Francisco, CA, June 2003, pp. 149–158.

[7] S. Bestaoui. One solution for the nondeterminism problem
in the SCEPTRE 2 fault tolerance technique,Euromicro
Workshop on Real-Time Systems, Odense, Denmark, June
1995, pp. 352–358.

[8] T. C. Bressoud, TFT: A software system for application-
transparent fault tolerance,International Symposium on
Fault-Tolerant Computing, Munich, Germany, June 1998,
pp. 128–137.

[9] T. C. Bressoud and F. B. Schneider. Hypervisor-based
fault-tolerance,ACM Transactions on Computer Systems,
vol. 14, no. 1, Feb 1996, pp. 80–107.

[10] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith.
Enforcing determinism for the consistent replication of
multithreaded CORBA applications,IEEE Symposium on
Reliable Distributed Systems, Lausanne, Switzerland, Oct
1999, pp. 263–273.

[11] F. B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: A tutorial,ACM Comput-
ing Surveysvol. 22, no. 4, Dec 1990, pp. 299–319.

[12] T. Wolf. Replication of Non-Deterministic Objects, PhD
thesis, EPFL, Switzerland, Nov 1988.

