
The Case for Byzantine Fault Detection

Andreas Haeberlen†‡ Petr Kouznetsov† Peter Druschel†
†Max Planck Institute for Software Systems ‡Rice University

1 Introduction

Distributed systems are subject to a variety of faults and
attacks. In this paper, we consider general (Byzantine)
faults [13], i.e. a faulty node may exhibit arbitrary be-
havior. In particular, a faulty node may corrupt its lo-
cal state and send arbitrary messages, including specific
messages aimed at subverting the system. Many security
attacks, such as censorship, freeloading, misrouting, and
data corruption, can be modeled as Byzantine faults.

Systems can be protected with Byzantine fault toler-
ance (BFT) techniques, which mask a bounded num-
ber of Byzantine faults, e.g. using state machine repli-
cation [4]. BFT is a very powerful technique, but it has
its costs. In a practical system that needs to tolerate up
to f concurrent Byzantine faults, BFT cannot be imple-
mented with less than 3f+1 replicas [3]. Moreover, BFT
scales poorly to large replica groups; as more servers are
added, the throughput of the system may actually de-
crease [7].

In this paper, we explore an alternative approach that
aims at detecting rather than masking faulty behavior.
With this approach, the system does not make any at-
tempt to hide the symptoms of Byzantine faults. Rather,
each node is equipped with a detector that monitors other
nodes for signs of faulty behavior. If the detector deter-
mines that some node has become faulty, it notifies the
application software, which can then take appropriate ac-
tion. For example, nodes can cease to communicate with
the faulty node; once all correct nodes have followed suit,
the faulty node is isolated and the fault is contained.

Fault detection is weaker than masking. For instance,
detection is insufficient for dealing with faults that have
serious and irreversible effects, such as deletion of all
copies of an important document. However, detection
may offer an efficient and scalable alternative to BFT for
faults that have limited or recoverable effects, including
freeloading, censorship, and denial-of-service.

We are interested in fault detectors that provide ac-

countability [17]. With such detectors, each action is un-
deniably associated with the identity of the node that has
performed the action, allowing the system to gather ir-
refutable evidence of faulty behavior.

The fault detection systems we consider should guar-
antee at least two properties. The system should be
complete: whenever a correct node observes the effects
of faulty behavior, the system eventually generates ev-
idence against at least one faulty node. Also, the sys-
tem should be accurate: it never generates valid evidence
against a correct node.

Adding accountability to a distributed system has sev-
eral important advantages, regardless of whether the sys-
tems uses BFT or not: first, any faulty behavior by a node
is guaranteed to be detected. Second, the evidence pro-
duced by the detector can be used to convince third par-
ties that a fault has occurred. Third, the evidence enables
the system to resolve he-said-she-said situations in which
two nodes accuse each other of being faulty. Lastly, the
presence of accountability alone deters certain types of
attacks on a system, because it identifies and exposes
faulty nodes.

Our goals in this paper are threefold: first, we exam-
ine the trade-offs between fault detection and traditional
BFT. Second, we give a precise definition of the class of
Byzantine faults that can be detected with our approach.
Finally, we briefly sketch a practical system that imple-
ments a Byzantine fault detector.

1.1 The case for fault detection
Techniques that mask Byzantine faults are perhaps easier
to use than fault detection systems, since they provide the
application designer with the abstraction of a system in
which failures simply do not occur. So what reasons are
there to opt for fault detection?
Detection requires less replication: If a practical sys-
tem can suffer up to f concurrent faults, BFT cannot be
implemented with less than 3f +1 nodes [3]. As we will

1

show, detection can be accomplished with only f + 1
nodes1. The complementary view of this point is that
BFT requires the fraction of faulty nodes in the system
to remain below 33% at all times, while a correct node
can reliably detect faults irrespective of the fraction of
faulty nodes.
Detection systems need only be provisioned for the
average load: In a BFT system, all replicas must pro-
cess each request promptly, since the client cannot make
progress before most of them have responded. In a
detection-based system, however, a single replica can
process each request and respond immediately; the other
replicas can later check the response during a period of
light load. Hence, a BFT system must be provisioned
such that each machine can handle the peak load, while
in a detection system, each machine must merely be able
to handle the average load.
Detection is cheaper: Detection avoids the consensus
required by BFT, and it enables extensive aggregation of
messages, state and processing associated with detection.
Also, there is no need for strong consistency among the
replicas, which makes it much easier to handle changes
to the replica group.

Detection systems do not only require fewer resources
than BFT, they also have some functional advantages that
benefit distributed systems whether or not they use BFT:
Detection enables a timely response to faults: In a sys-
tem that does not use BFT, once correct nodes obtain
evidence of a fault, they can stop communicating with
the faulty node and thus isolate it. Also, correct nodes
can initiate recovery, e.g. by creating additional replicas
of any objects affected by the fault, or by alerting a hu-
man operator who can repair the faulty node. Timely re-
pair can also help BFT-based systems to stay within their
bound for the number of concurrent faults.
Detection provides a deterrent: The mere presence of
a detection system can reduce the likelihood of certain
faults. For example, it can discourage freeloading and
censorship in peer-to-peer systems by creating a disin-
centive to cheating, since a faulty node risks isolation and
expulsion from the system. Furthermore, if the system
maintains a binding from node identifiers to real-world
principals, then the owner of a faulty node can be ex-
posed and held responsible. Reducing the frequency of
certain faults also benefits a BFT-based system, allowing
it to more easily maintain its error bound.

1.2 Uses of fault detectors
Next, we sketch general application areas for fault detec-
tion systems, along with some specific examples.

1This does not contradict the impossibility results of [3] because
detection systems are not based on agreement.

Systems with recoverable state: Network file systems
and distributed information systems typically perform
periodic backup snapshots to ensure data durability. It
is usually acceptable for these systems to revert to the
latest snapshot in case of a serious malfunction or attack.
However, faults must be discovered quickly in order to
prevent corrupt data from spreading to the backups. By
adding a detector, these systems can bound the time to
detection for a very general class of faults.
Redundant systems: Decentralized systems and sys-
tems based on BFT mitigate or mask the effect of a lim-
ited number of faults through redundancy. However, if
faulty nodes are not discovered and removed quickly,
they can accumulate over time and eventually lead to a
system failure. Using a detector, faulty nodes can be
identified and isolated before they can cause any serious
harm.
Systems that span multiple administrative domains:
Such systems can benefit from accountability to keep
the players honest and to apportion blame, e.g. in feder-
ated databases and hosted Web services, or to discourage
freeloading and censorship in peer-to-peer systems. The
Internet’s inter-domain routing system is another exam-
ple. In the case of a malfunction, detectors could not only
identify which party is at fault; they would also produce
evidence that would allow other parties to prove to their
customers that they are not to blame.

2 Definitions

A perfect detection system would immediately detect any
Byzantine fault. The power of a practical, efficient de-
tection system, however, is necessarily limited. In this
paper, we will assume that the detector on a correct node
can observe all messages sent and received by that node.
This clearly means that some Byzantine faults are not
observable and therefore cannot be detected.

2.1 Examples of detectable behavior
Before defining formally the classes of Byzantine faults
that can be detected using observable messages, we dis-
cuss a simple example protocol that has only two meth-
ods: A put method, which is used to store an object
on a node, and a get method, which is used to retrieve
it. Figure 1(a) shows a simple example of a message ex-
change in which node B receives an object from node A

and later delivers it to another node C.
Now assume that node B is faulty and wants to pre-

vent node C from obtaining the object. There are two
ways for B to achieve this. One is to break the protocol
and deny C’s request, as shown in Figure 1(b); we call
this behavior detectably faulty. The other is to pretend

2

A B C
Put X

X

OK
Get X

A B C
Put X

OK
Get X

A B C
Put X

Sorry

OK
Get X

(a) (b) (c)

Figure 1: In this simple message exchange, node B is
(a) correct, (b) detectably faulty, and (c) detectably ig-
norant, provided that nodes A and C are correct.

that it has not received the request message, as shown in
Figure 1(c); we call this behavior detectably ignorant.

In both cases, the fault is detectable because it affects
the message exchange observed by the correct nodes.
However, a node might become faulty but continue to
follow the protocol exactly as if it were correct. Such a
fault cannot be detected with our approach. Similarly, if
a fault is completely internal to one node or affects only
messages sent to other faulty nodes, it is not observable
by any correct node and therefore cannot be detected.

In the rest of this section, we provide a formal defini-
tion of detectable faultiness and ignorance, and we intro-
duce a set of guarantees that can be given by a detection
system.

2.2 System model
We consider a set Π of nodes. Every node i is modeled as
a state machine Ai and a detector module Bi (Figure 2).
Informally, we say that a node i is correct if it respects
the specifications of both Ai and Bi. Otherwise, the node
is faulty.

Nodes communicate with each other through message
passing. We assume that messages are uniquely identi-
fied. For a message m, let sender(m) and receiver(m)
denote the sender and the receiver of m, respectively.
For the moment, we do not put any restrictions on local
processing time and communication delays. However,
we assume that, after some number of retransmissions,
a message sent from a correct node to a correct node is
eventually received.

An event is either sendi(m) ∈ Oi, where i =
sender(m), or receivej(m) ∈ Ij , where j =
receiver(m), or an application-specific input or output.

An execution E is a sequence of events such that in
E, each m is sent and received at most once, and each
receivei(m) is preceded by the corresponding sendj(m).
We distinguish events associated with the state machine
Ai and events associated with the detector module Bi.

ApplicationApplication

State machine
Ai

State machine
Ai

Detector module
Bi

Detector module
Bi

NetworkNetwork

send(m)
recv(m)

app
I/O

suspectedj
trustedj
exposedj

Figure 2: Information flow between application, proto-
col, and detector module on node i

E|Ai denotes the subsequence of E that consists of all
events associated with Ai in E, and E|Bi denotes the
subsequence of E that consists of all events associated
with Bi in E. We say that a node i is correct in E if (1)
E|Ai (respectively, E|Bi) conforms to Ai (respectively,
Bi), i.e., if the sequence of outputs produced in E|Ai

(E|Bi) is legal, given Ai (Bi) and the sequence of inputs
in E|Ai (E|Bi), and (2) if E is infinite, then both E|Ai

and E|Bi are also infinite. Otherwise we say that i is
faulty in E.

2.3 Detectable faultiness and ignorance
We define a history of a node i as a sequence of events
of Ai. A history h of a node i is valid if it con-
forms to Ai, i.e. if, given the sequence of incoming
messages and application-specific inputs in h, Ai could
have produced the sequence of outgoing messages and
application-specific outputs in h. A pair (h1, h2) of his-
tories of i is consistent if h1 is a prefix of h2, or vice
versa. If i is a correct node, one trivial example of a
valid history is E|Ai.

Let M(E) denote the set of messages received by the
nodes in an execution E. We assume that there exists a
history map ϕ that associates every message m ∈ M(E)
with a history of sender(m). For a correct node, ϕ(m)
is the prefix of the local execution E|sender(m) up to
and including send(m). Thus, for any message m sent
by a correct node, ϕ(m) is valid, and for every pair of
messages m and m′ sent by a correct node, ϕ(m) and
ϕ(m′) are consistent.

We say that a message m is observable in E if there
exists a correct node i and a sequence of messages
m1, . . . , mk such that

(i) m1 = m,
(ii) receive(mk) belongs to E|Ai,

(iii) for all j = 2, . . . , k: receive(mj−1) belongs to
ϕ(mj).

3

In other words, m is observable if it causally precedes
at least one event on a correct node.

We say that a node i is detectably faulty with respect to
a message m sent by i in an execution E if m is observ-
able in E and satisfies one of the following properties:

(1) ϕ(m) is not valid (for i)
(2) There exists a message m′ that was also sent by i

and is observable in E, such that ϕ(m) is inconsis-
tent with ϕ(m′)

The set of nodes causally affected by m and m′ (if m′

exists) are called accomplices of i with respect to m.
We say that a node i is detectably ignorant in E if i is

not detectably faulty in E and there exists a message m

sent to i by a correct node, such that, for all observable
messages m′ sent by i, receivei(m) does not appear in
ϕ(m′).

2.4 Guarantees
When the detector module Bi on a correct node i has
seen evidence of faulty behavior on another node j, it
sends a failure indication to its local application process.
We define three different types of indications: trustedj ,
suspectedj and exposedj . Intuitively, if the module Bi

outputs suspectedj , there is evidence that j is ignoring
certain inputs, e.g. by refusing to accept a service request
from a correct node. If it outputs exposedj , there exists
a proof that j is faulty, i.e. that it has deviated from the
specification of its state machine Aj . Finally, Bi outputs
trustedj while none of the other conditions hold.

We can use a definition similar to that of [5, 11] to de-
scribe these properties. Thus, the detection system guar-
antees that the following properties hold in every execu-
tion:

• Eventual strong completeness: (1) Eventually, ev-
ery detectably ignorant node is suspected forever by
every correct node, and (2) if a node i is detectably
faulty with respect to a message m, then eventually,
some faulty accomplice of i (with respect to m) is
exposed or forever suspected by every correct node.

• Eventual strong accuracy: (1) No correct node is
forever suspected by a correct node, and (2) no cor-
rect node is ever exposed by a correct node.

Note that the detector need not guarantee that a cor-
rect node is always trusted by another correct node; it
can jump from trusted to suspected and back, e.g. due
to long message delays. Further, if a set of colluding
faulty nodes includes at least one detectably faulty node,
then at least one of them will eventually be exposed or
suspected forever; we chose this weaker guarantee to fa-
cilitate an efficient implementation of ϕ. Nevertheless,

if there are only finitely many faulty nodes in the sys-
tem, correct nodes can be affected by their behavior only
finitely long.

3 A practical detector for Byzantine faults

To show that detection systems are practical, we now
briefly sketch the design of PeerReview, a system that
can provide the guarantees stated in Section 2.4. A proof
can be found in [9]. We have implemented PeerReview
and initial results suggest that it is practical and efficient.
An experimental evaluation is the subject of a future, full
paper.

3.1 Assumptions and goals
For PeerReview, we assume that the system can be mod-
eled as described in Section 2.2, with two additional as-
sumptions: First, the protocol is deterministic, i.e. it pro-
duces the same outputs given the same sequence of in-
puts. This is a fairly common assumption in state ma-
chine replication [4,12]. Second, nodes have strong iden-
tities and hold a cryptographic keypair that can be used to
sign messages. This can be accomplished, for instance,
by giving each node an identity certificate, signed by a
certification authority, that ties its public key to its node
identifier.

We also make the common assumption that the at-
tacker does not have the ability to break cryptographic
signatures. Other than that, the Byzantine nodes may be-
have arbitrarily and collude with each other.

3.2 Secure histories and commitment
Each node is required to keep a log of all the inputs and
outputs of its local state machine Ai. The log is orga-
nized as a hash chain, similar to a secure history [15],
such that the top-level hash covers the contents of the en-
tire log. Furthermore, each node must frequently commit
to the contents of its log by publishing an authenticator,
i.e. a signed copy of its top-level hash value. This makes
the log tamper-evident and ensures that nodes cannot re-
vise their history [15].

Nodes must sign all messages they send and acknowl-
edge all messages they receive. If a message is not ac-
knowledged after several retries, it is broadcast to the
other nodes, who then challenge the node to accept the
message. This ensures that a node is suspected by all
correct nodes if it refuses to accept a message.

Each message or acknowledgment m contains an au-
thenticator, as well as a short proof that send(m) or
receive(m) was the top-level entry of the correspond-
ing log. The recipient extracts the authenticators and,

4

Put
X

OK
Get X

Sorry
E

D C

B

A

E

D C

B

A

E

D C

B

A

E

D C

B

A

E

D C

B

Audit A

(1) (2) (3) (4) (5)

Figure 3: Node E stores an object for client D (1) and then tries to hide it from client B (2). The two clients broadcast
the authenticators they have obtained from E (3). Later, A audits E, discovers the inconsistency, and exposes E (4).
Finally, node A broadcasts its evidence against E, so the other nodes can expose E as well (5).

once in a while, forwards them to other nodes. Thus, in-
terested nodes eventually learn of all authenticators that
have been signed by a correct node.

3.3 Auditing

Each node i is periodically audited by other nodes. Dur-
ing an audit, the auditor j first asks i for a signed log
segment that covers all entries since the last audit. j then
validates the log against the most current authenticator
it has obtained for i. If i refuses to comply, j begins to
suspect i.

Next, j performs a consistency check to see if the log
matches all the recent authenticators it has obtained for i.
If two or more authenticators do not match, then i has ei-
ther forked its log or is keeping multiple copies. The mis-
matched authenticators are then made available to other
nodes as evidence, who can thus mark i as exposed.

In a third step, j extracts all authenticators from the log
segment and forwards them to other nodes. This ensures
that, even if i is faulty, other nodes will eventually be
aware of all relevant authenticators.

Finally, j performs a conformance check. It instanti-
ates a local copy of the state machine Ai and initializes
it with a recent checkpoint from the log. Then it replays
all the inputs from the log and checks whether the corre-
sponding outputs match the ones in the log. Thus, j can
check protocol conformance without an explicit protocol
specification. If it detects a divergence, it has obtained a
signed confession and can thus expose i.

In a naive implementation of the algorithm, every node
audits every other node, requiring O(N 2) messages and
computation. Though the messages are small and can be
heavily aggregated, this does not scale to large systems.
In practice, however, if at most f nodes can be faulty at
any given time, it suffices if f + 1 different nodes audit a
given node, which reduces the complexity to O(f 2). The
details of this optimization and a full evaluation will be
provided in a subsequent full paper.

3.4 Checking evidence
If a node j detects a fault on a node i, it obtains one of
two types of evidence. If i is detectably faulty, j obtains
either a) an authenticator and a log, both of which are
signed but do not match, or b) a signed log segment that
fails the conformance check. Both constitute a signed
confession. If i is detectably ignorant, j obtains a chal-
lenge (e.g. a request for a certain log segment) that i can-
not answer, except by providing a signed confession.

Both types of evidence can be distributed to the other
nodes, who can verify them independently, either by re-
peating the checks performed by j (in case of a signed
confession) or by contacting i and checking its response
(in case of a challenge). PeerReview ensures that such a
check will always fail for a correct node, since it never
produces a signed confession and can respond to any
challenge.

The output of the PeerReview failure detector on a
given node is reliable if, and only if, the node has a valid
copy of the state machine to be run by all the nodes in
the system. A node can ensure this, for instance, by ob-
taining a signed binary program from a trusted authority.

To bound the space required for logs, nodes may be
allowed to discard old log entries, e.g. after a month. In
this case, older evidence can no longer be verified and
must be discarded as well, which eventually allows faulty
nodes to return to the system. This is acceptable as long
as the system has ample time to respond to the failure and
initiate repair. If repair is not an option, e.g. in a large
decentralized system, the log must be kept long enough
to create a serious disincentive for attackers. Alterna-
tively, the remaining nodes could use Byzantine consen-
sus to permanently revoke faulty nodes’ certificates prior
to truncating the log.

4 Related work

Our concept of a detection system is based on the failure
detectors by Chandra and Toueg [5]. These were defined
for crash failures, but Malkhi and Reiter [14] later ex-

5

tended them to special classes of Byzantine failures. In a
more general manner, Doudou et al. [8] have introduced
muteness failure detectors dealing with nodes that pre-
maturely stop sending algorithm messages. Kihlstrom et
al. [11] have introduced several classes of failure detec-
tors that expose detectable Byzantine failures. However,
they consider classes of algorithms in which all messages
are broadcast, and in which processes know when to ex-
pect messages from other processes. PeerReview does
not require these assumptions.

State machine replication [12, 16] is a classical tech-
nique for masking a limited number of Byzantine faults.
Today’s state-of-the-art BFT techniques, e.g. [4], are
based on this idea. Although these techniques perfectly
protect the system from Byzantine failures, they are usu-
ally not intended to detect the faulty nodes, and they
are inherently expensive and not scalable. The BAR
model [1] extends the BFT approach to tolerate self-
ish behavior of rational nodes while providing a mecha-
nism for detecting certain application-specific misbehav-
ior. Our approach is more general and, unlike BAR, it
does not inherit the algorithmic complexity of BFT.

Alvisi et al. [2] introduced a technique that moni-
tors quorum systems and raises an alarm if the failure
assumptions are about to be violated. This technique
is probabilistic and, unlike PeerReview, cannot identify
which nodes are faulty.

Intrusion detection systems [6] can detect certain types
of protocol violations; however, unlike PeerReview, the
heuristics used in IDS tend to produce either false pos-
itives, false negatives, or both. Reputation systems
such as EigenTrust [10] can be used against Byzan-
tine failures, but, unlike PeerReview, they cannot pre-
vent a coalition of malicious nodes from denouncing a
correct node. Finally, trusted computing platforms like
TCG/Palladium can detect failures that involve software
modifications, but force users to exclusively run certi-
fied software. PeerReview merely checks protocol con-
formance but otherwise allows diverse implementations.

Yumerefendi and Chase [17] proposed account-
ability as a first-class design principle for depend-
able distributed systems, but mentioned that general,
application-independent techniques were still elusive.
We believe that detection systems, and PeerReview in
particular, are a major step towards this goal.

5 Conclusion and future work
We have discussed an alternative approach to handling
Byzantine faults, in which the system does not mask
faults but rather detects and responds to them. We have
formally specified the class of faults that can be detected
with this approach, and we have sketched the design of
a practical system that implements it. To the best of our

knowledge, it is the first practical, general-purpose algo-
rithm for detecting Byzantine faults.

Detection promises to reduce the cost of robustness to
Byzantine faults, and to increase dependability of sys-
tems in which BFT is infeasible or prohibitively expen-
sive. For example, detection offers a relatively efficient
defense for freeloading and censorship attacks in large-
scale distributed systems. It can provide accountability
in systems that span multiple administrative domains,
such as federated databases, hosted web services and
peer-to-peer systems.

We believe that further research in detection systems
will yield a variety of new detectors with different trade-
offs. For example, more powerful detectors could be
constructed by adding more sensors, such as attesta-
tion, and hybrids between detection and BFT could al-
low more fine-grained tradeoffs between protection and
overhead.

References
[1] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and

C. Porth. BAR fault tolerance for cooperative services. In Pro-
ceedings of SOSP’05, Oct 2005.

[2] L. Alvisi, D. Malkhi, E. T. Pierce, and M. K. Reiter. Fault detec-
tion for Byzantine quorum systems. IEEE Trans. Parallel Distrib.
Syst., 12(9):996–1007, 2001.

[3] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM, 32(4), 1995.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In
Proceedings of OSDI’99, pages 173–186, 1999.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems. Journal of the ACM, 43(2):225–267,
March 1996.

[6] D. E. Denning. An intrusion-detection model. IEEE Transactions
on Software Engineering, 13(2):222–232, 1987.

[7] J. R. Douceur and J. Howell. Byzantine fault isolation in the
Farsite distributed file system. In Proc. of IPTPS’06, Feb 2006.

[8] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Mute-
ness failure detectors: Specification and implementation. In
EDCC, pages 71–87, 1999.

[9] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: De-
tecting faulty behavior in distributed systems. Technical Report
Max Planck Institute for Software Systems 2006-1, Jul 2006.

[10] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigen-
Trust algorithm for reputation management in p2p networks. In
Proc. 12th International WWW Conference, May 2003.

[11] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Byzan-
tine fault detectors for solving consensus. The Computer Journal,
46(1):16–35, 2003.

[12] L. Lamport. Using time instead of timeout for fault-tolerant dis-
tributed systems. ACM Trans. Prog. Lang. Syst., 6(2):254–280,
1984.

[13] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[14] D. Malkhi and M. K. Reiter. Unreliable intrusion detection in
distributed computations. In CSFW, pages 116–125, 1997.

[15] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. In Proceedings of the 11th USENIX Se-
curity Symposium, San Francisco, CA, Jan 2002.

[16] F. B. Schneider. Implementing fault-tolerant services using the
state machine approach: a tutorial. ACM Computing Surveys,
22(4):299–319, 1990.

[17] A. R. Yumerefendi and J. S. Chase. The role of accountability in
dependable distributed systems. In Proceedings of the 1st Work-
shop on Hot Topics in System Dependability, Jun 2005.

6

