
Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract
MapReduce and its variants have been highly successful
in implementing large-scale data-intensive applications
on commodity clusters. However, most of these systems
are built around an acyclic data flow model that is not
suitable for other popular applications. This paper fo-
cuses on one such class of applications: those that reuse
a working set of data across multiple parallel operations.
This includes many iterative machine learning algorithms,
as well as interactive data analysis tools. We propose a
new framework called Spark that supports these applica-
tions while retaining the scalability and fault tolerance of
MapReduce. To achieve these goals, Spark introduces an
abstraction called resilient distributed datasets (RDDs).
An RDD is a read-only collection of objects partitioned
across a set of machines that can be rebuilt if a partition
is lost. Spark can outperform Hadoop by 10x in iterative
machine learning jobs, and can be used to interactively
query a 39 GB dataset with sub-second response time.

1 Introduction
A new model of cluster computing has become widely
popular, in which data-parallel computations are executed
on clusters of unreliable machines by systems that auto-
matically provide locality-aware scheduling, fault toler-
ance, and load balancing. MapReduce [11] pioneered this
model, while systems like Dryad [17] and Map-Reduce-
Merge [24] generalized the types of data flows supported.
These systems achieve their scalability and fault tolerance
by providing a programming model where the user creates
acyclic data flow graphs to pass input data through a set of
operators. This allows the underlying system to manage
scheduling and to react to faults without user intervention.

While this data flow programming model is useful for a
large class of applications, there are applications that can-
not be expressed efficiently as acyclic data flows. In this
paper, we focus on one such class of applications: those
that reuse a working set of data across multiple parallel
operations. This includes two use cases where we have
seen Hadoop users report that MapReduce is deficient:

• Iterative jobs: Many common machine learning algo-
rithms apply a function repeatedly to the same dataset
to optimize a parameter (e.g., through gradient de-
scent). While each iteration can be expressed as a

MapReduce/Dryad job, each job must reload the data
from disk, incurring a significant performance penalty.

• Interactive analytics: Hadoop is often used to run
ad-hoc exploratory queries on large datasets, through
SQL interfaces such as Pig [21] and Hive [1]. Ideally,
a user would be able to load a dataset of interest into
memory across a number of machines and query it re-
peatedly. However, with Hadoop, each query incurs
significant latency (tens of seconds) because it runs as
a separate MapReduce job and reads data from disk.

This paper presents a new cluster computing frame-
work called Spark, which supports applications with
working sets while providing similar scalability and fault
tolerance properties to MapReduce.

The main abstraction in Spark is that of a resilient dis-
tributed dataset (RDD), which represents a read-only col-
lection of objects partitioned across a set of machines that
can be rebuilt if a partition is lost. Users can explicitly
cache an RDD in memory across machines and reuse it
in multiple MapReduce-like parallel operations. RDDs
achieve fault tolerance through a notion of lineage: if a
partition of an RDD is lost, the RDD has enough infor-
mation about how it was derived from other RDDs to be
able to rebuild just that partition. Although RDDs are
not a general shared memory abstraction, they represent
a sweet-spot between expressivity on the one hand and
scalability and reliability on the other hand, and we have
found them well-suited for a variety of applications.

Spark is implemented in Scala [5], a statically typed
high-level programming language for the Java VM, and
exposes a functional programming interface similar to
DryadLINQ [25]. In addition, Spark can be used inter-
actively from a modified version of the Scala interpreter,
which allows the user to define RDDs, functions, vari-
ables and classes and use them in parallel operations on a
cluster. We believe that Spark is the first system to allow
an efficient, general-purpose programming language to be
used interactively to process large datasets on a cluster.

Although our implementation of Spark is still a proto-
type, early experience with the system is encouraging. We
show that Spark can outperform Hadoop by 10x in itera-
tive machine learning workloads and can be used interac-
tively to scan a 39 GB dataset with sub-second latency.

This paper is organized as follows. Section 2 describes

1



Spark’s programming model and RDDs. Section 3 shows
some example jobs. Section 4 describes our implemen-
tation, including our integration into Scala and its inter-
preter. Section 5 presents early results. We survey related
work in Section 6 and end with a discussion in Section 7.

2 Programming Model
To use Spark, developers write a driver program that im-
plements the high-level control flow of their application
and launches various operations in parallel. Spark pro-
vides two main abstractions for parallel programming:
resilient distributed datasets and parallel operations on
these datasets (invoked by passing a function to apply on
a dataset). In addition, Spark supports two restricted types
of shared variables that can be used in functions running
on the cluster, which we shall explain later.

2.1 Resilient Distributed Datasets (RDDs)

A resilient distributed dataset (RDD) is a read-only col-
lection of objects partitioned across a set of machines that
can be rebuilt if a partition is lost. The elements of an
RDD need not exist in physical storage; instead, a handle
to an RDD contains enough information to compute the
RDD starting from data in reliable storage. This means
that RDDs can always be reconstructed if nodes fail.

In Spark, each RDD is represented by a Scala object.
Spark lets programmers construct RDDs in four ways:
• From a file in a shared file system, such as the Hadoop

Distributed File System (HDFS).
• By “parallelizing” a Scala collection (e.g., an array)

in the driver program, which means dividing it into a
number of slices that will be sent to multiple nodes.

• By transforming an existing RDD. A dataset with ele-
ments of type A can be transformed into a dataset with
elements of type B using an operation called flatMap,
which passes each element through a user-provided
function of type A ⇒ List[B].1 Other transforma-
tions can be expressed using flatMap, including map
(pass elements through a function of type A ⇒ B)
and filter (pick elements matching a predicate).

• By changing the persistence of an existing RDD. By
default, RDDs are lazy and ephemeral. That is, par-
titions of a dataset are materialized on demand when
they are used in a parallel operation (e.g., by passing
a block of a file through a map function), and are dis-
carded from memory after use.2 However, a user can
alter the persistence of an RDD through two actions:

– The cache action leaves the dataset lazy, but hints
that it should be kept in memory after the first time
it is computed, because it will be reused.

1flatMap has the same semantics as the map in MapReduce, but map
is usually used to refer to a one-to-one function of type A⇒ B in Scala.

2This is how “distributed collections” function in DryadLINQ.

– The save action evaluates the dataset and writes
it to a distributed filesystem such as HDFS. The
saved version is used in future operations on it.

We note that our cache action is only a hint: if there is
not enough memory in the cluster to cache all partitions of
a dataset, Spark will recompute them when they are used.
We chose this design so that Spark programs keep work-
ing (at reduced performance) if nodes fail or if a dataset is
too big. This idea is loosely analogous to virtual memory.

We also plan to extend Spark to support other levels of
persistence (e.g., in-memory replication across multiple
nodes). Our goal is to let users trade off between the cost
of storing an RDD, the speed of accessing it, the proba-
bility of losing part of it, and the cost of recomputing it.

2.2 Parallel Operations

Several parallel operations can be performed on RDDs:

• reduce: Combines dataset elements using an associa-
tive function to produce a result at the driver program.

• collect: Sends all elements of the dataset to the driver
program. For example, an easy way to update an array
in parallel is to parallelize, map and collect the array.

• foreach: Passes each element through a user provided
function. This is only done for the side effects of the
function (which might be to copy data to another sys-
tem or to update a shared variable as explained below).

We note that Spark does not currently support a
grouped reduce operation as in MapReduce; reduce re-
sults are only collected at one process (the driver).3 We
plan to support grouped reductions in the future using
a “shuffle” transformation on distributed datasets, as de-
scribed in Section 7. However, even using a single re-
ducer is enough to express a variety of useful algorithms.
For example, a recent paper on MapReduce for ma-
chine learning on multicore systems [10] implemented ten
learning algorithms without supporting parallel reduction.

2.3 Shared Variables

Programmers invoke operations like map, filter and re-
duce by passing closures (functions) to Spark. As is typi-
cal in functional programming, these closures can refer to
variables in the scope where they are created. Normally,
when Spark runs a closure on a worker node, these vari-
ables are copied to the worker. However, Spark also lets
programmers create two restricted types of shared vari-
ables to support two simple but common usage patterns:

• Broadcast variables: If a large read-only piece of data
(e.g., a lookup table) is used in multiple parallel op-
erations, it is preferable to distribute it to the workers
only once instead of packaging it with every closure.
Spark lets the programmer create a “broadcast vari-

3Local reductions are first performed at each node, however.

2



able” object that wraps the value and ensures that it is
only copied to each worker once.

• Accumulators: These are variables that workers can
only “add” to using an associative operation, and that
only the driver can read. They can be used to im-
plement counters as in MapReduce and to provide a
more imperative syntax for parallel sums. Accumu-
lators can be defined for any type that has an “add”
operation and a “zero” value. Due to their “add-only”
semantics, they are easy to make fault-tolerant.

3 Examples
We now show some sample Spark programs. Note that we
omit variable types because Scala supports type inference.

3.1 Text Search

Suppose that we wish to count the lines containing errors
in a large log file stored in HDFS. This can be imple-
mented by starting with a file dataset object as follows:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val ones = errs.map(_ => 1)
val count = ones.reduce(_+_)

We first create a distributed dataset called file that
represents the HDFS file as a collection of lines. We trans-
form this dataset to create the set of lines containing “ER-
ROR” (errs), and then map each line to a 1 and add up
these ones using reduce. The arguments to filter, map and
reduce are Scala syntax for function literals.

Note that errs and ones are lazy RDDs that are never
materialized. Instead, when reduce is called, each worker
node scans input blocks in a streaming manner to evaluate
ones, adds these to perform a local reduce, and sends its
local count to the driver. When used with lazy datasets in
this manner, Spark closely emulates MapReduce.

Where Spark differs from other frameworks is that it
can make some of the intermediate datasets persist across
operations. For example, if wanted to reuse the errs

dataset, we could create a cached RDD from it as follows:

val cachedErrs = errs.cache()

We would now be able to invoke parallel operations on
cachedErrs or on datasets derived from it as usual, but
nodes would cache partitions of cachedErrs in memory
after the first time they compute them, greatly speeding
up subsequent operations on it.

3.2 Logistic Regression

The following program implements logistic regression
[3], an iterative classification algorithm that attempts to
find a hyperplane w that best separates two sets of points.
The algorithm performs gradient descent: it starts w at a
random value, and on each iteration, it sums a function of

w over the data to move w in a direction that improves it.
It thus benefits greatly from caching the data in memory
across iterations. We do not explain logistic regression in
detail, but we use it to show a few new Spark features.

// Read points from a text file and cache them
val points = spark.textFile(...)

.map(parsePoint).cache()
// Initialize w to random D-dimensional vector
var w = Vector.random(D)
// Run multiple iterations to update w
for (i <- 1 to ITERATIONS) {
val grad = spark.accumulator(new Vector(D))
for (p <- points) { // Runs in parallel
val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y
grad += s * p.x

}
w -= grad.value

}

First, although we create an RDD called points, we
process it by running a for loop over it. The for key-
word in Scala is syntactic sugar for invoking the foreach
method of a collection with the loop body as a closure.
That is, the code for(p <- points){body} is equiv-
alent to points.foreach(p => {body}). Therefore,
we are invoking Spark’s parallel foreach operation.

Second, to sum up the gradient, we use an accumulator
variable called gradient (with a value of type V ector).
Note that the loop adds to gradient using an overloaded
+= operator. The combination of accumulators and for

syntax allows Spark programs to look much like impera-
tive serial programs. Indeed, this example differs from a
serial version of logistic regression in only three lines.

3.3 Alternating Least Squares

Our final example is an algorithm called alternating least
squares (ALS). ALS is used for collaborative filtering
problems, such as predicting users’ ratings for movies that
they have not seen based on their movie rating history (as
in the Netflix Challenge). Unlike our previous examples,
ALS is CPU-intensive rather than data-intensive.

We briefly sketch ALS and refer the reader to [27] for
details. Suppose that we wanted to predict the ratings of u
users for m movies, and that we had a partially filled ma-
trix R containing the known ratings for some user-movie
pairs. ALS models R as the product of two matrices M
and U of dimensions m × k and k × u respectively; that
is, each user and each movie has a k-dimensional “feature
vector” describing its characteristics, and a user’s rating
for a movie is the dot product of its feature vector and the
movie’s. ALS solves for M and U using the known rat-
ings and then computes M × U to predict the unknown
ones. This is done using the following iterative process:
1. Initialize M to a random value.
2. Optimize U given M to minimize error on R.

3



3. Optimize M given U to minimize error on R.
4. Repeat steps 2 and 3 until convergence.

ALS can be parallelized by updating different users /
movies on each node in steps 2 and 3. However, because
all of the steps use R, it is helpful to make R a broadcast
variable so that it does not get re-sent to each node on each
step. A Spark implementation of ALS that does is shown
below. Note that we parallelize the collection 0 until u

(a Scala range object) and collect it to update each array:

val Rb = spark.broadcast(R)
for (i <- 1 to ITERATIONS) {
U = spark.parallelize(0 until u)

.map(j => updateUser(j, Rb, M))

.collect()
M = spark.parallelize(0 until m)

.map(j => updateUser(j, Rb, U))

.collect()
}

4 Implementation
Spark is built on top of Mesos [16, 15], a “cluster operat-
ing system” that lets multiple parallel applications share
a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows
Spark to run alongside existing cluster computing frame-
works, such as Mesos ports of Hadoop and MPI, and share
data with them. In addition, building on Mesos greatly re-
duced the programming effort that had to go into Spark.

The core of Spark is the implementation of resilient dis-
tributed datasets. As an example, suppose that we define
a cached dataset called cachedErrs representing error
messages in a log file, and that we count its elements us-
ing map and reduce, as in Section 3.1:

val file = spark.textFile("hdfs://...")
val errs = file.filter(_.contains("ERROR"))
val cachedErrs = errs.cache()
val ones = cachedErrs.map(_ => 1)
val count = ones.reduce(_+_)

These datasets will be stored as a chain of objects cap-
turing the lineage of each RDD, shown in Figure 1. Each
dataset object contains a pointer to its parent and informa-
tion about how the parent was transformed.

Internally, each RDD object implements the same sim-
ple interface, which consists of three operations:
• getPartitions, which returns a list of partition IDs.
• getIterator(partition), which iterates over a partition.
• getPreferredLocations(partition), which is used for

task scheduling to achieve data locality.
When a parallel operation is invoked on a dataset, Spark

creates a task to process each partition of the dataset and
sends these tasks to worker nodes. We try to send each

HdfsTextFile 
path = hdfs://… 

file: 

FilteredDataset 
func = _.contains(…) 

errs: 

CachedDataset cachedErrs: 

MappedDataset 
func = _ => 1 ones: 

Figure 1: Lineage chain for the distributed dataset objects de-
fined in the example in Section 4.

task to one of its preferred locations using a technique
called delay scheduling [26]. Once launched on a worker,
each task calls getIterator to start reading its partition.

The different types of RDDs differ only in how they
implement the RDD interface. For example, for a Hdfs-
TextFile, the partitions are block IDs in HDFS, their pre-
ferred locations are the block locations, and getIterator
opens a stream to read a block. In a MappedDataset, the
partitions and preferred locations are the same as for the
parent, but the iterator applies the map function to ele-
ments of the parent. Finally, in a CachedDataset, the
getIterator method looks for a locally cached copy of a
transformed partition, and each partition’s preferred loca-
tions start out equal to the parent’s preferred locations, but
get updated after the partition is cached on some node to
prefer reusing that node. This design makes faults easy to
handle: if a node fails, its partitions are re-read from their
parent datasets and eventually cached on other nodes.

Finally, shipping tasks to workers requires shipping
closures to them—both the closures used to define a dis-
tributed dataset, and closures passed to operations such as
reduce. To achieve this, we rely on the fact that Scala clo-
sures are Java objects and can be serialized using Java se-
rialization; this is a feature of Scala that makes it relatively
straightforward to send a computation to another machine.
Scala’s built-in closure implementation is not ideal, how-
ever, because we have found cases where a closure object
references variables in the closure’s outer scope that are
not actually used in its body. We have filed a bug report
about this, but in the meantime, we have solved the issue
by performing a static analysis of closure classes’ byte-
code to detect these unused variables and set the corre-
sponding fields in the closure object to null. We omit
the details of this analysis due to lack of space.

Shared Variables: The two types of shared variables in
Spark, broadcast variables and accumulators, are imple-
mented using classes with custom serialization formats.
When one creates a broadcast variable b with a value v,
v is saved to a file in a shared file system. The serialized
form of b is a path to this file. When b’s value is queried

4



on a worker node, Spark first checks whether v is in a
local cache, and reads it from the file system if it isn’t.
We initially used HDFS to broadcast variables, but we are
developing a more efficient streaming broadcast system.

Accumulators are implemented using a different “se-
rialization trick.” Each accumulator is given a unique ID
when it is created. When the accumulator is saved, its
serialized form contains its ID and the “zero” value for
its type. On the workers, a separate copy of the accu-
mulator is created for each thread that runs a task using
thread-local variables, and is reset to zero when a task be-
gins. After each task runs, the worker sends a message to
the driver program containing the updates it made to var-
ious accumulators. The driver applies updates from each
partition of each operation only once to prevent double-
counting when tasks are re-executed due to failures.

Interpreter Integration: Due to lack of space, we only
sketch how we have integrated Spark into the Scala inter-
preter. The Scala interpreter normally operates by com-
piling a class for each line typed by the user. This class
includes a singleton object that contains the variables or
functions on that line and runs the line’s code in its con-
structor. For example, if the user types var x = 5 fol-
lowed by println(x), the interpreter defines a class (say
Line1) containing x and causes the second line to com-
pile to println(Line1.getInstance().x). These
classes are loaded into the JVM to run each line. To make
the interpreter work with Spark, we made two changes:
1. We made the interpreter output the classes it defines

to a shared filesystem, from which they can be loaded
by the workers using a custom Java class loader.

2. We changed the generated code so that the singleton
object for each line references the singleton objects
for previous lines directly, rather than going through
the static getInstance methods. This allows clo-
sures to capture the current state of the singletons they
reference whenever they are serialized to be sent to a
worker. If we had not done this, then updates to the
singleton objects (e.g., a line setting x = 7 in the ex-
ample above) would not propagate to the workers.

5 Results
Although our implementation of Spark is still at an early
stage, we relate the results of three experiments that show
its promise as a cluster computing framework.

Logistic Regression: We compared the performance of
the logistic regression job in Section 3.2 to an implemen-
tation of logistic regression for Hadoop, using a 29 GB
dataset on 20 “m1.xlarge” EC2 nodes with 4 cores each.
The results are shown in Figure 2. With Hadoop, each
iteration takes 127s, because it runs as an independent
MapReduce job. With Spark, the first iteration takes 174s
(likely due to using Scala instead of Java), but subsequent

0 

1000 

2000 

3000 

4000 

1 5 10 20 30 

R
un

ni
ng

 T
im

e 
(s

) 

Number of Iterations 

Hadoop 
Spark 

Figure 2: Logistic regression performance in Hadoop and Spark.

iterations take only 6s, each because they reuse cached
data. This allows the job to run up to 10x faster.

We have also tried crashing a node while the job was
running. In the 10-iteration case, this slows the job down
by 50s (21%) on average. The data partitions on the
lost node are recomputed and cached in parallel on other
nodes, but the recovery time was rather high in the cur-
rent experiment because we used a high HDFS block size
(128 MB), so there were only 12 blocks per node and the
recovery process could not utilize all cores in the cluster.
Smaller block sizes would yield faster recovery times.

Alternating Least Squares: We have implemented the
alternating least squares job in Section 3.3 to measure the
benefit of broadcast variables for iterative jobs that copy
a shared dataset to multiple nodes. We found that without
using broadcast variables, the time to resend the ratings
matrix R on each iteration dominated the job’s running
time. Furthermore, with a naı̈ve implementation of broad-
cast (using HDFS or NFS), the broadcast time grew lin-
early with the number of nodes, limiting the scalability of
the job. We implemented an application-level multicast
system to mitigate this. However, even with fast broad-
cast, resending R on each iteration is costly. Caching R
in memory on the workers using a broadcast variable im-
proved performance by 2.8x in an experiment with 5000
movies and 15000 users on a 30-node EC2 cluster.

Interactive Spark: We used the Spark interpreter to
load a 39 GB dump of Wikipedia in memory across 15
“m1.xlarge” EC2 machines and query it interactively. The
first time the dataset is queried, it takes roughly 35 sec-
onds, comparable to running a Hadoop job on it. How-
ever, subsequent queries take only 0.5 to 1 seconds, even
if they scan all the data. This provides a qualitatively dif-
ferent experience, comparable to working with local data.

6 Related Work
Distributed Shared Memory: Spark’s resilient dis-
tributed datasets can be viewed as an abstraction for dis-
tributed shared memory (DSM), which has been studied
extensively [20]. RDDs differ from DSM interfaces in
two ways. First, RDDs provide a much more restricted

5



programming model, but one that lets datasets be rebuilt
efficiently if cluster nodes fail. While some DSM systems
achieve fault tolerance through checkpointing [18], Spark
reconstructs lost partitions of RDDs using lineage infor-
mation captured in the RDD objects. This means that only
the lost partitions need to be recomputed, and that they
can be recomputed in parallel on different nodes, without
requiring the program to revert to a checkpoint. In addi-
tion, there is no overhead if no nodes fail. Second, RDDs
push computation to the data as in MapReduce [11], rather
than letting arbitrary nodes access a global address space.

Other systems have also restricted the DSM program-
ming model to improve performance, reliability and pro-
grammability. Munin [8] lets programmers annotate vari-
ables with the access pattern they will have so as to choose
an optimal consistency protocol for them. Linda [13] pro-
vides a tuple space programming model that may be im-
plemented in a fault-tolerant fashion. Thor [19] provides
an interface to persistent shared objects.

Cluster Computing Frameworks: Spark’s parallel op-
erations fit into the MapReduce model [11]. However,
they operate on RDDs that can persist across operations.

The need to extend MapReduce to support iterative jobs
was also recognized by Twister [6, 12], a MapReduce
framework that allows long-lived map tasks to keep static
data in memory between jobs. However, Twister does not
currently implement fault tolerance. Spark’s abstraction
of resilient distributed datasets is both fault-tolerant and
more general than iterative MapReduce. A Spark program
can define multiple RDDs and alternate between running
operations on them, whereas a Twister program has only
one map function and one reduce function. This also
makes Spark useful for interactive data analysis, where
a user can define several datasets and then query them.

Spark’s broadcast variables provide a similar facility to
Hadoop’s distributed cache [2], which can disseminate a
file to all nodes running a particular job. However, broad-
cast variables can be reused across parallel operations.

Language Integration: Spark’s language integration is
similar to that of DryadLINQ [25], which uses .NET’s
support for language integrated queries to capture an ex-
pression tree defining a query and run it on a cluster.
Unlike DryadLINQ, Spark allows RDDs to persist in
memory across parallel operations. In addition, Spark
enriches the language integration model by supporting
shared variables (broadcast variables and accumulators),
implemented using classes with custom serialized forms.

We were inspired to use Scala for language integration
by SMR [14], a Scala interface for Hadoop that uses clo-
sures to define map and reduce tasks. Our contributions
over SMR are shared variables and a more robust imple-
mentation of closure serialization (described in Section 4).

Finally, IPython [22] is a Python interpreter for scien-

tists that lets users launch computations on a cluster using
a fault-tolerant task queue interface or low-level message
passing interface. Spark provides a similar interactive in-
terface, but focuses on data-intensive computations.

Lineage: Capturing lineage or provenance information
for datasets has long been a research topic in the scien-
tific computing an database fields, for applications such
as explaining results, allowing them to be reproduced by
others, and recomputing data if a bug is found in a work-
flow step or if a dataset is lost. We refer the reader to [7],
[23] and [9] for surveys of this work. Spark provides a re-
stricted parallel programming model where fine-grained
lineage is inexpensive to capture, so that this information
can be used to recompute lost dataset elements.

7 Discussion and Future Work
Spark provides three simple data abstractions for pro-
gramming clusters: resilient distributed datasets (RDDs),
and two restricted types of shared variables: broadcast
variables and accumulators. While these abstractions are
limited, we have found that they are powerful enough to
express several applications that pose challenges for exist-
ing cluster computing frameworks, including iterative and
interactive computations. Furthermore, we believe that
the core idea behind RDDs, of a dataset handle that has
enough information to (re)construct the dataset from data
available in reliable storage, may prove useful in develop-
ing other abstractions for programming clusters.

In future work, we plan to focus on four areas:

1. Formally characterize the properties of RDDs and
Spark’s other abstractions, and their suitability for var-
ious classes of applications and workloads.

2. Enhance the RDD abstraction to allow programmers
to trade between storage cost and re-construction cost.

3. Define new operations to transform RDDs, including
a “shuffle” operation that repartitions an RDD by a
given key. Such an operation would allow us to im-
plement group-bys and joins.

4. Provide higher-level interactive interfaces on top of
the Spark interpreter, such as SQL and R [4] shells.

8 Acknowledgements
We thank Ali Ghodsi for his feedback on this paper. This
research was supported by California MICRO, Califor-
nia Discovery, the Natural Sciences and Engineering Re-
search Council of Canada, as well as the following Berke-
ley RAD Lab sponsors: Sun Microsystems, Google, Mi-
crosoft, Amazon, Cisco, Cloudera, eBay, Facebook, Fu-
jitsu, HP, Intel, NetApp, SAP, VMware, and Yahoo!.

References
[1] Apache Hive. http://hadoop.apache.org/hive.

6



[2] Hadoop Map/Reduce tutorial. http://hadoop.apache.org/
common/docs/r0.20.0/mapred tutorial.html.

[3] Logistic regression – Wikipedia.
http://en.wikipedia.org/wiki/Logistic regression.

[4] The R project for statistical computing.
http://www.r-project.org.

[5] Scala programming language. http://www.scala-lang.org.
[6] Twister: Iterative MapReduce.

http://iterativemapreduce.org.
[7] R. Bose and J. Frew. Lineage retrieval for scientific data

processing: a survey. ACM Computing Surveys, 37:1–28,
2005.

[8] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and performance of Munin. In SOSP ’91.
ACM, 1991.

[9] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends
in Databases, 1(4):379–474, 2009.

[10] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. R. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In NIPS ’06, pages 281–288. MIT
Press, 2006.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[12] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for
data intensive scientific analyses. In ESCIENCE ’08,
pages 277–284, Washington, DC, USA, 2008. IEEE
Computer Society.

[13] D. Gelernter. Generative communication in linda. ACM
Trans. Program. Lang. Syst., 7(1):80–112, 1985.

[14] D. Hall. A scalable language, and a scalable framework.
http://www.scala-blogs.org/2008/09/scalable-language-
and-scalable.html.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data
center. Technical Report UCB/EECS-2010-87, EECS
Department, University of California, Berkeley, May
2010.

[16] B. Hindman, A. Konwinski, M. Zaharia, and I. Stoica. A
common substrate for cluster computing. In Workshop on
Hot Topics in Cloud Computing (HotCloud) 2009, 2009.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from sequential
building blocks. In EuroSys 2007, pages 59–72, 2007.

[18] A.-M. Kermarrec, G. Cabillic, A. Gefflaut, C. Morin, and
I. Puaut. A recoverable distributed shared memory
integrating coherence and recoverability. In FTCS ’95.
IEEE Computer Society, 1995.

[19] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber,
U. Maheshwari, A. C. Myers, M. Day, and L. Shrira. Safe
and efficient sharing of persistent objects in thor. In
SIGMOD ’96, pages 318–329. ACM, 1996.

[20] B. Nitzberg and V. Lo. Distributed shared memory: a
survey of issues and algorithms. Computer, 24(8):52 –60,
aug 1991.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data

processing. In SIGMOD ’08. ACM, 2008.
[22] F. Pérez and B. E. Granger. IPython: a system for

interactive scientific computing. Comput. Sci. Eng.,
9(3):21–29, May 2007.

[23] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of
data provenance in e-science. SIGMOD Rec.,
34(3):31–36, 2005.

[24] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing
on large clusters. In SIGMOD ’07, pages 1029–1040.
ACM, 2007.

[25] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using
a high-level language. In OSDI ’08, San Diego, CA, 2008.

[26] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling. In EuroSys 2010, April 2010.

[27] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the Netflix
prize. In AAIM ’08, pages 337–348, Berlin, Heidelberg,
2008. Springer-Verlag.

7


