Analytics in the cloud

Dow we really need to reinvent the
storage stack?

R. Ananthanarayanan, Karan Gupta, Prashant Pandey,
Himabindu Pucha, Prasenijit Sarkar, Mansi Shah, Renu .
Tewari "

Image courtesy NASA / ESA




Data-Intensive Internet Scale Applications

Typical Applications
» Web-scale search, indexing, mining
« Genomic sequencing

* brain-scale network simulations

{1

Heet
F
kS




T TR rResear

Data-Intensive Internet Scale Applications

= Key Requirements

Scale to very large data sets

Platform needs to scale to 1000’s of nodes

Built of commodity hardware for cost efficiency

Tolerate failures during “every” job execution

Support data shipping to reduce network requirements




B TR Resear

MapReduce for analytics

= MapReduce is emerging as a model for large-scale analytics application
= Important design goals are extreme-scalability and fault-tolerance
= Storage layer is separated and has well-defined requirements

Image source: http://developer.yahoo.com/hadoop/tutorial/module1.htmi




© B Resea

MapReduce Data-store requirements

Provide a hierarchical namespace with directories and files
Allow applications to read/write data to files

Protect data availability and reliability in the face of node and
disk failures

Provide high bandwidth access to reasonably-sized chunks of
data to all compute nodes (not necessarily all-to-all)

Provide chunk access-affinity information to allow proper
scheduling of tasks




Data store options: Cluster FS Vs Specialized FS

Specialized FS Cluster FS

Scaling Yes Yes

Commodity hardware compliant Yes Yes




el T

Data store options: Cluster FS Vs Specialized FS

Specialized FS Cluster FS

Scaling Yes Yes

Commodity hardware compliant Yes Yes

Traditional application support \[o Yes

Mature management tools No Yes




el T

Data store options: Cluster FS Vs Specialized FS

Specialized FS Cluster FS

Scaling Yes Yes

Commodity hardware compliant Yes Yes

Traditional application support \[o Yes

Mature management tools No Yes

Tuned for Hadoop No




0T B Resear
Modifying a Cluster Filesystem for MapReduce

= GPFS
« Mature filesystem - many large production installations

« High performance, Highly scalable

» Reliability features focused on SAN environments
> Supports rack-aware 2-way replication

POSIX interface
Supports shared disk (SAN) and shared-nothing setups

Not optimized for MapReduce workloads

> Does not expose data location information
> largest block size =16 MB

= Changes for Hadoop:
* Make blocks bigger

« Let the platform know where the big blocks are
« Optimize replication and placement to reduce network usage




Key change: Metablocks

Works for many workloads

« Small FS blocks (eg: 512K) - - -
« Large Application blks (eg: 64M)
ow allocation schomo ][l]]][l]

« Metablock size granularity for New allocation policy
wide striping

Block map operates on large @ - - -
Metablock size
All FS operations operate on small HJ !

regular block size FS block Application “meta-block”

Additional changes to provide
block location information and
“write affinity”




MapReduce performance

2500.00

GPFS rack=1
2000.00 L M HDFS rack=1
% GPFS rack=2
M HDFS rack=2

1500.00

Time (sec)

1000.00

TeraGen Terasort

Test bed Hadoop : version 0.18.1 16 nodes

iDataPlex: 42 nodes GPFS: version pre3.3 160 GB data

8 cores, 8GB RAM (replication factor = 2)
4+1 disks per-node




-
A
0
o

T
0

N

©
£
P
o

z

512K 512K, metablock 16M
Normalized Random perf B Normalized Seq read perf
iDataPlex: 42 nodes GPFS: version pre3.3

8 cores, 8GB RAM Bonnie filesystem benchmark
4+1 disks per-node




Things that didn’t work

Large filesystem block-size

Turn-off Prefetching

Create alignment of records
to block boundaries

File System

512K 16M 16M, no-prefetch

Normalized Random perf B Normalized Seq read perf




Advantages of traditional filesystems

Traditional filesystems have solved many hard problems like
access control, quotas, snapshots ...

Allow traditional and MapReduce applications to share the
same input data.

Exploit Filesystem tools & scripts based on “regular”
filesystems.

Re-use of Backup/Archive solutions built around particular
filesystems.
Mixed analytics pipelines.

Using a MapReduce-specific filesystem (e.g. HDFS):
Analyze Output
Crawler writes to a traditional filesystem

Analyze Serve




Conclusion

= MapReduce platforms can use traditional filesystems without
loss of performance.

= There are important reasons why traditional filesystems are
attractive to users of MapReduce.




