

IBM Research

Analytics in the cloud

Dow we really need to reinvent the storage stack?

R. Ananthanarayanan, Karan Gupta, Prashant Pandey, Himabindu Pucha, Prasenjit Sarkar, Mansi Shah, Renu Tewari

Image courtesy NASA / ESA

Data-Intensive Internet Scale Applications

Typical Applications

- Web-scale search, indexing, mining
- Genomic sequencing
- brain-scale network simulations

Data-Intensive Internet Scale Applications

- Key Requirements
 - Scale to very large data sets
 - Platform needs to scale to 1000's of nodes
 - Built of commodity hardware for cost efficiency
 - Tolerate failures during "every" job execution
 - Support data shipping to reduce network requirements

MapReduce for analytics

- MapReduce is emerging as a model for large-scale analytics application
- Important design goals are extreme-scalability and fault-tolerance
- Storage layer is separated and has well-defined requirements

Image source: http://developer.yahoo.com/hadoop/tutorial/module1.html

MapReduce Data-store requirements

- Provide a hierarchical namespace with directories and files
- Allow applications to read/write data to files
- Protect data availability and reliability in the face of node and disk failures
- Provide high bandwidth access to reasonably-sized chunks of data to all compute nodes (not necessarily all-to-all)
- Provide chunk access-affinity information to allow proper scheduling of tasks

Data store options: Cluster FS Vs Specialized FS

	Specialized FS	Cluster FS
Scaling	Yes	Yes
Commodity hardware compliant	Yes	Yes

Data store options: Cluster FS Vs Specialized FS

	Specialized FS	Cluster FS
Scaling	Yes	Yes
Commodity hardware compliant	Yes	Yes
Traditional application support	No	Yes
Mature management tools	No	Yes

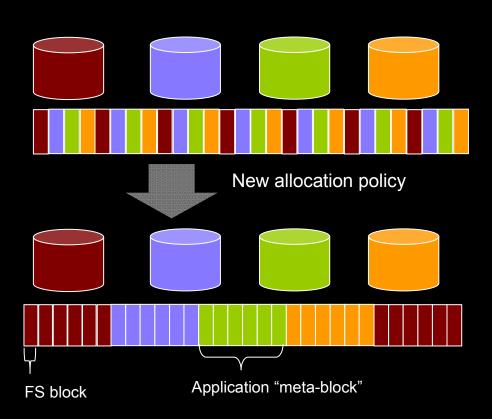
Data store options: Cluster FS Vs Specialized FS

	Specialized FS	Cluster FS
Scaling	Yes	Yes
Commodity hardware compliant	Yes	Yes
Traditional application support	No	Yes
Mature management tools	No	Yes
Tuned for Hadoop	Yes	No

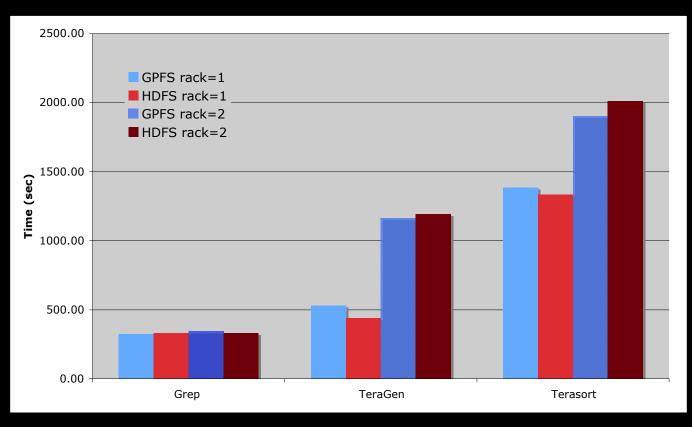
Modifying a Cluster Filesystem for MapReduce

GPFS

- Mature filesystem many large production installations
- High performance, Highly scalable
- Reliability features focused on SAN environments
 - > Supports rack-aware 2-way replication
- POSIX interface
- Supports shared disk (SAN) and shared-nothing setups
- Not optimized for MapReduce workloads
 - > Does not expose data location information
 - > largest block size = 16 MB


Changes for Hadoop:

- Make blocks bigger
- Let the platform know where the big blocks are
- Optimize replication and placement to reduce network usage


Key change: Metablocks

- Works for many workloads
 - Small FS blocks (eg: 512K)
 - Large Application blks (eg: 64M)
- New allocation scheme
 - Metablock size granularity for wide striping
- Block map operates on large Metablock size
- All FS operations operate on small regular block size
- Additional changes to provide block location information and "write affinity"

MapReduce performance

Test bed

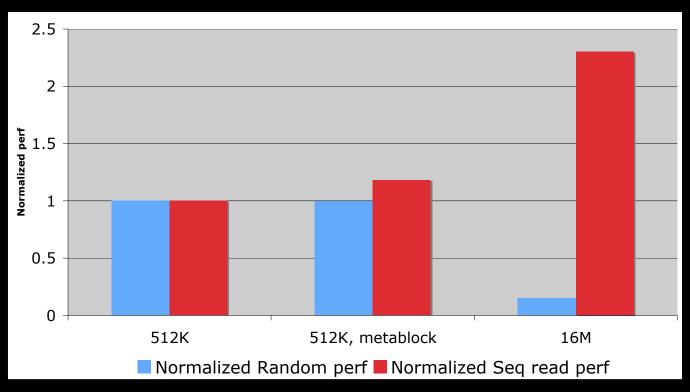
iDataPlex: 42 nodes

8 cores, 8GB RAM

4+1 disks per-node

Hadoop: version 0.18.1

GPFS: version pre3.3


16 nodes

160 GB data

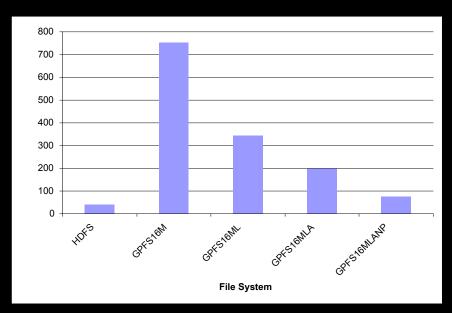
(replication factor = 2)

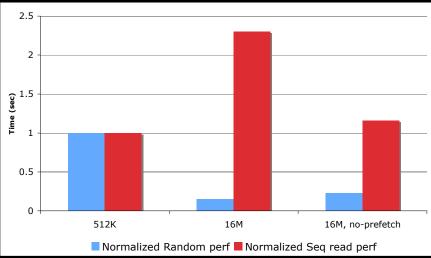
Impact on traditional workloads

iDataPlex: 42 nodes

GPFS: version pre3.3

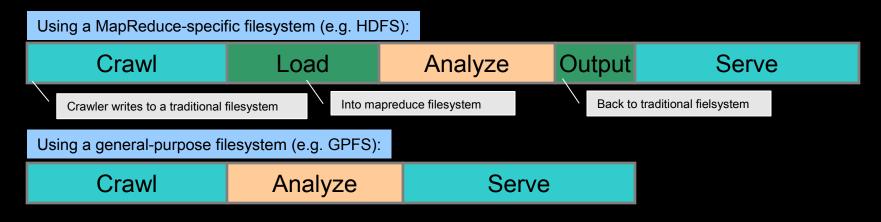
8 cores, 8GB RAM


Bonnie filesystem benchmark


4+1 disks per-node

Things that didn't work

- Large filesystem block-size
- Turn-off Prefetching
- Create alignment of records to block boundaries



Advantages of traditional filesystems

- Traditional filesystems have solved many hard problems like access control, quotas, snapshots ...
- Allow traditional and MapReduce applications to share the same input data.
- Exploit Filesystem tools & scripts based on "regular" filesystems.
- Re-use of Backup/Archive solutions built around particular filesystems.
- Mixed analytics pipelines.

Conclusion

- MapReduce platforms can use traditional filesystems without loss of performance.
- There are important reasons why traditional filesystems are attractive to users of MapReduce.