
Constructing and Managing Appliances for Cloud Deployments from
Repositories of Reusable Components

Matthew S. Wilson
rPath, Inc.

Raleigh, North Carolina
msw@rpath.com

Abstract

In order to efficiently utilize Cloud Computing envi-
ronments (more specifically, Infrastructure as a Service
offerings), developers must be able to quickly incorpo-
rate their applications into integrated systems commonly
called software appliances. This paper describes a sys-
tem that can be used to construct and maintain soft-
ware appliances calledConary. The core of Conary is a
software configuration management system that places
all the components included in an appliance in a ver-
sioned repository. The version control system properties
of Conary’s software configuration management design
naturally facilities image creation and updates. An ap-
proach utilizing Conary solves many of the challenges
faced by adopters of Cloud Computing.

1 Introduction
The availability of virtualization and cloud comput-
ing can allow Information Technology (IT) organiza-
tions to be more flexible and responsive to business
needs [1], but this flexibility does not come without
new challenges. Enterprise developers are adopting new
platforms (such as LAMP scripting languages [2] and
Ruby [3]) to more rapidly and efficiently build applica-
tions, but IT organizations are often slow to support de-
ploying them. Much of the time spent in the deployment
of new applications is fitting the application onto one of
several standardized operating systems. This is a major
pitfall in traditional software deployment which is only
exasperated by virtualization; a better solution is to build
Virtual Appliances [4].

The construction and maintenance of virtual appli-
ances requires a holistic approach. As operating system,
support libraries, application frameworks, and applica-
tion components are delivered as a preconfigured unit,
the mechanism that assembles the unit and maintains it
over time should be designed to manage the system as
a whole. Some projects make appliance creation easier,
however they achieve it though existing automated oper-
ating system installation and post-install scripting capa-
bilities. The operating system and application are con-
tinue to be managed separately and the appliance creator

still has to design and implement an update mechanism,
be that through distributing new virtual machine images
or an integrated online update system.

Conary [7] embodies a new approach to constructing
and maintaining complete systems of software. This pa-
per will detail Conary’s approach to system management
with a holistic software configuration management sys-
tem. Design considerations derived from Conary’s ap-
proach will be discussed. Finally, implementation will
be discussed.

2 Approach

Traditionally software configuration management prac-
tices have been applied to components that, when com-
bined, constitute a software product [8]. Typically soft-
ware configuration management is a software develop-
ment practice, enabling developers to manage the de-
pendencies and interconnections of source code in or-
der to produce consistent binary objects. This approach
is sufficient when the software product is an application
that is installed on a general purpose operating system.
However, if the product is a fully integrated stack of soft-
ware — from the operating system to the application —
the scope of software configuration management must
be widened to cover every included component. Fur-
thermore, once all the components are versioned indi-
vidually, the amalgamation of these specific versioned
components must also be versioned [9].

Once a full set of software is managed under version
control and grouped together, several operations come
naturally. A deployment image can be generated from
the versioned group of software. This deployment im-
age can be used to install on bare metal systems, im-
ported into a local virtualization system’s inventory, or
deployed on off-premises infrastructure in the cloud.
This image is a transient object; it can always be re-
created from the repository. The image is simply a vehi-
cle to deploy the application stack.

Once a system is deployed, the same repository of ver-
sioned components used to create the image can be used
to update a running system. The deployed image con-
tains a database that records the system state including



Figure 1: Conary Repository Architecture Overview

all the versions of the components that comprise it. Up-
dating the system is much like updating a source code
checkout from a traditional software configuration man-
agement system. Files are added, removed, and updated
in accordance to the versioned objects in the repository.
This incremental update function is particularly impor-
tant when deploying into the cloud where transferring
large amounts of data should be avoided.

3 Design and Implementation
When laying the architecture for Conary, unique design
challenges were considered. Storing files and distribut-
ing them to clients had to be efficient for both repository
disk space and network transfer. The file format used by
clients to obtain incremental changes had to be compact
and facilitate operations more akin to software configu-
ration management than package management. Coalesc-
ing software components into a functioning, dependency
closed set had to be easy for both the developer and the
systems engineer. This section will provide information
on the implementations that met these design challenges.

3.1 File Contents Store
Conary’s purpose is to manage large numbers of inter-
dependent software components over time. This results
in several design challenges. Because Conary is placing
every software component, including the operating sys-
tem, under version control, an efficient storage mecha-
nism was required. Traditional software packaging sys-
tems store the same file contents redundantly as new
versions are produced. This leads to wasted storage in
package repositories and unneeded data transfer by each

client downloading the package to apply an update.
Instead of storing the same file contents in multiple

atomic package archives, Conary uses a content address-
able storage system to record each distinct file in the
repository. A SHA-1 [10] digest of the file contents is
calculated. The file is compressed using gzip [11] and
hexadecimal representation of the digest is used as the
file name. Unlike most version control systems, Conary
does not store file deltas. The typical rate of change for
files managed by Conary is much lower than source code
files. Storing whole compressed files saves the client and
the server from reconstructing file contents from a series
of file deltas.

Concerns have been raised [12] regarding the safety
of assuming that a cryptographic hash is sufficient to de-
clare that two inputs are actually different. These con-
cerns have have been reasonably addressed [13], there-
fore Conary does not take any additional measures to
ensure that SHA-1 hash collisions do not occur.

The space saving benefits of storing file contents using
this method have been measured in two Conary reposi-
tories populated from software packaged in RPM [14]
format. See Table 1. As updated RPM files are imported
into the repository, the space saving effect increases. As
most servers hosting a software repository have large
disks, the space saving benefit is not of highest value;
the greater value comes in reducing data transfer across
the network to geographically distributed systems.

3.2 Changesets

Conary uses a custom changeset file to transmit data to
and from a repository. Both the repository and a Conary-



Repository Conary Size RPM Size Savings
CentOS 5 1,080 MiB 1,307 MiB 17.4%

SLES 10 SP2 1,259 MiB 1,902 MiB 33.8%

Table 1: Storage requirements for packages imported into a
Conary repository versus the native RPM package size

managed system use the same changeset format. When
a repository applies a changeset, the resulting new ob-
ject is stored in the database and unique file contents are
recorded in the contents store; when a system applies a
changeset, the new object is stored in the local database
and the file system is updated to the new state. Conary
treats the local system much like a repository. The main
difference is that a repository can store multiple versions
of an object, whereas a local system stores only one.

Changesets can be eitherrelativeor absolute. A rela-
tive changeset contains the differences between two ver-
sioned objects and are smaller than absolute changesets.
An absolute changeset contains the entire object and can
be used to update a repository or a system that does not
contain a previous version of the object, or to update a
system if the installed version is not known.

3.3 Groups

Building a group in Conary means composing software
components into a cohesive set, closing the set’s de-
pendencies, and recording the specific versions of the
components included in the group. This feature enables
an appliance builder to truly manage the entire system
of software as a unit composed of versioned objects,
instead of a loosely coupled set of installed software.
Furthermore, during the build process policies are ap-
plied to the software included in the group. This catches
common errors such as file path conflicts and including
multiple versions of the same package. In the future,
these policies can be extended to inspect package meta-
data to discover hints regarding package incompatibil-
ity or version dependencies. In cases where program-
matic determination of compatibility is unreliable, soft-
ware providers can use groups to define sets of system
software that are known to work correctly together.

Groups are created by processing a Conary recipe file.
Recipe files are small Python programs that, when inter-
preted, locate the requested software components from
the repository, ensure dependency closure, and create
a changeset that can be committed to a Conary reposi-
tory. By using Python as the recipe language, Conary
can take advantage of object oriented features such as
inheritance. In the following group recipe example a su-
perclass is loaded from the “group-appliance” compo-
nent in a Conary repository. This superclass is provided
by the operating system platform and ensures that the
minimum system software is included in the group.

loadRecipe(’group-appliance’)
class Appliance(GroupApplianceRecipe):

name=’group-jira-appliance’
version=’1.0’

def addPackages(r):
r.add(’openssh-server’)
r.add(’tomcat’)
r.add(’jira’)

By using inheritance, the appliance builder can fo-
cus on the application and its dependencies. Often
the required system software components differ be-
tween virtualization targets. For example, if an appli-
ance will be deployed in the 32-bit EC2 environment
then a Xen-optimized “nosegneg” glibc package should
be included in the appliance. If VMware is the tar-
get, thevmxnet andvmblock drivers should be in-
cluded to optimize disk and network performance. The
GroupApplianceRecipe superclass handles these
differences; the appliance developer can focus on the ap-
plication. At build time the appliance developer specifies
the required targets (32-bit, 64-bit, Xen, VMware, etc.)
and the appropriate flavors [7] of the group are produced.

3.4 Deployment
Once the full set of versioned software components for
an appliance are bound together as a group, a deploy-
ment image can be created. rBuilder [15] includes a
system that automates this process. A file system large
enough to house the appliance software is created. The
appropriate group is then installed onto the file system.
Any finalization scripts included in the software compo-
nents are executed in a contained virtual environment.
The resulting file system is then manipulated as required
for the target environment. For example, the file system
can be transformed into a a VMware formatted VMDK
image [16] or a HyperV VHD image [17]. To deploy
the appliance to the Amazon Web Services EC2 cloud,
the file system image is bundled and uploaded using the
EC2 deployment tools.

Building an image is a starting point for a software ap-
pliance. To efficiently maintain multiple deployed appli-
ances in geographically distributed locations, a Conary
repository should be co-located with the deployed appli-
ances. This mirror Conary repository is updated using
relative changesets to reduce data transfer over slower
links. Mirrors can be configured to propagate only
changes made to a particular group, reducing the repos-
itory footprint.

There are several options for executing updates
on the appliance from simple cron-based scripts to
WEBM/CIM solutions. Update coordination between
multiple appliances is an area that needs additional
thought.



4 Related Work
Several other projects and products are constructing vir-
tual appliances. In one such project, virt-factory [5]
uses Red Hat’s kickstart [18] operating system instal-
lation scripting language and Puppet [19] manifests to
perform operating system customization and application
deployment. One problem with this approach is that
the operating system and application are still managed
disjointedly. Organizations adopting a similar approach
with scripting and automation tools like Puppet must
set up multiple software repositories, build synchroniza-
tion scripts to distribute these repositories geographi-
cally, and rely on incremental scripting to manipulate
systems from state to state. Neither kickstart nor Puppet
have integrated version control systems, therefore an or-
ganization must take additional steps to version control
these files [20].

Online offerings such as RightScale [24] help deploy
and scale applications in the cloud. This is beneficial if
your deployment target is EC2, but the same technology
cannot be used for other cloud targets, private virtualiza-
tion infrastructures, or bare metal deployments. SUSE
Studio [23] and CohesiveFT’s Elastic Server [25] cre-
ate software appliance images, but updates are not coor-
dinated between all the included software components.
When updates are applied, the appliance retrieves the lat-
est version of each installed package from the repository.

5 Conclusion
The software appliance model aims to unify applications
and operating systems into a single unit which brings
new requirements to system maintenance. It is more ef-
fective to build manageability into a system from day
one than to retrofit [6]. Existing server automation tools
help reduce a system administrator’s workload but do
not make the systems themselves more manageable. As
virtualization and cloud computing increases the num-
ber of deployed systems to manage, new approaches to
building inherently manageable systems must consid-
ered. No reputable software development organization
would attempt to deliver a quality product without a soft-
ware configuration management system [21]. It is time
the same methodologies are employed to manage entire
software systems.

6 Availability
Conary is freely available under the Common Pub-
lic License and can be downloaded fromftp://
download.rpath.com/conary/. Alternatively,
rPath makes Conary available to users under a commer-
cial license. rPath’s commercial rBuilder product auto-
mates building deployment images for bare metal, virtu-
alization, and cloud targets.

7 Acknowledgments
The development of Conary and related technologies is
partially supported by the Department of Energy under
grant number DE-FG02-06ER84505. Erik Troan as-
sisted by writing a tool to calculate the storage utilized
by the contents store versus binary RPMs. Thanks to
Elizabeth Yarbrough, who helped proofread, and to the
anonymous reviewers for their helpful feedback.

References
[1] Jeffrey C. Mogul,Operating Systems Should Sup-

port Business Change, USENIX Tenth conference
on Hot Topics in Operating Systems (2005).

[2] George Lawton,LAMP Lights Enterprise Devel-
opment Efforts, Computer, Volume 38, Issue 9
(September 2005).

[3] Steve Vinoski,Enterprise Integration with Ruby,
IEEE Internet Computing, Volume 10, Issue 4
(July 2006).

[4] Changhua Sun, Le He, Qingbo Wang and Ruth
Willenborg, Simplifying Service Deployment with
Virtual Appliances, 2008 IEEE International Con-
ference on Services Computing.

[5] David Lutterkort, Mark McLoughlin,Manageable
Virtual Appliances, Linux Symposium (2007).

[6] George Candea,Toward Quantifying System Man-
ageability, USENIX Fourth Workshop on Hot Top-
ics in System Dependability (2008).

[7] Michael K. Johnson, Erik W. Troan, Matthew
S. Wilson,Repository-based System Management
Using Conary, Linux Symposium (2004).

[8] Reidar Conradi, Bernhard Westfechtel,Version
Models for Software Configuration Management,
ACM Computing Surveys Volume 30, Issue 2
(June 1998).

[9] Erik W. Troan, A version to rule them all, jour-
nal entry,http://ewtroan.livejournal.
com/23225.html

[10] Federal Information Processing Standards (FIPS)
Publication 180-1 (1995).

[11] L. Peter Deutsch.GZIP File Format Specification
version 4.3. Internet RFC 1952, May 1996.

[12] Henson, Valerie Aurora,An analysis of compare-
by-hash. USENIX Hot Topics in Operating Sys-
tems (2003).

[13] Black, J.,Compare-by-Hash: A Reasoned Analy-
sis. 2006 USENIX Annual Technical Conference.

[14] Mark Ewing, Erik Troan,The RPM Packaging Sys-
tem, First Conference on Freely Redistributable
Software (1996).



[15] http://www.rpath.com/corp/
products/rbuilder

[16] http://www.vmware.com/interfaces/
vmdk.html

[17] http://www.microsoft.
com/windowsserversystem/
virtualserver/techinfo/vhdspec.
mspx

[18] Red Hat, Inc. Red Hat Enterprise Linux In-
stallation Guide http://www.redhat.
com/docs/manuals/enterprise/
RHEL-5-manual/Installation_
Guide-en-US/ch-kickstart2.html

[19] http://reductivelabs.com/trac/
puppet/

[20] http://reductivelabs.com/trac/
puppet/wiki/VersionControlPuppet

[21] Jacky Estublier, David Leblang, Andr van der
Hoek, Reidar Conradi, Geoffrey Clemm, Walter
Tichy, Darcy Wiborg-Weber,Impact of Software
Engineering Research on the Practice of Software
Configuration Management, ACM Transactions on
Software Engineering and Methodology Volume
14, Issue 4 (October 2005).

[22] Darrell Reimer, Arun Thomas, Glenn Ammons,
Todd Mummert, Bowen Alpern, Vasanth Bala, em-
phOpening black boxes: using semantic informa-
tion to combat virtual machine image sprawl, Pro-
ceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution en-
vironments (2008).

[23] http://studio.suse.com/

[24] http://rightscale.com/

[25] http://elasticserver.com/

[26] http://moka5.com/


