
Towards Trusted Cloud Computing

Nuno Santos Krishna P. Gummadi Rodrigo Rodrigues

MPI-SWS

Abstract

Cloud computing infrastructures enable companies to cut
costs by outsourcing computations on-demand. How-
ever, clients of cloud computing services currently have
no means of verifying the confidentiality and integrity of
their data and computation.

To address this problem we propose the design of a
trusted cloud computing platform (TCCP). TCCP en-
ables Infrastructure as a Service (IaaS) providers such
as Amazon EC2 to provide a closed box execution envi-
ronment that guarantees confidential execution of guest
virtual machines. Moreover, it allows users to attest to
the IaaS provider and determine whether or not the ser-
vice is secure before they launch their virtual machines.

1 Introduction

Companies can greatly reduce IT costs by offloading
data and computation to cloud computing services. Still,
many companies are reluctant to do so, mostly due to
outstanding security concerns. A recent study [2] sur-
veyed more than 500 chief executives and IT managers
in 17 countries, and found that despite the potential
benefits, executives “trust existing internal systems over
cloud-based systems due to fear about security threats
and loss of control of data and systems”. One of the
most serious concerns is the possibility of confidential-
ity violations. Either maliciously or accidentally, cloud
provider’s employees can tamper with or leak a com-
pany’s data. Such actions can severely damage the repu-
tation or finances of a company.

In order to prevent confidentiality violations, cloud
services’ customers might resort to encryption. While
encryption is effective in securing data before it is stored
at the provider, it cannot be applied in services where
data is to be computed, since the unencrypted data must
reside in the memory of the host running the computa-
tion. In Infrastructure as a Service (IaaS) cloud services

such as Amazon’s EC2, the provider hosts virtual ma-
chines (VMs) on behalf of its customers, who can do
arbitrary computations. In these systems, anyone with
privileged access to the host can read or manipulate a
customer’s data. Consequently, customers cannot protect
their VMs on their own.

Cloud service providers are making a substantial effort
to secure their systems, in order to minimize the threat
of insider attacks, and reinforce the confidence of cus-
tomers. For example, they protect and restrict access
to the hardware facilities, adopt stringent accountabil-
ity and auditing procedures, and minimize the number
of staff who have access to critical components of the
infrastructure [8]. Nevertheless, insiders that administer
the software systems at the provider backend ultimately
still possess the technical means to access customers’
VMs. Thus, there is a clear need for a technical solu-
tion that guarantees the confidentiality and integrity of
computation, in a way that is verifiable by the customers
of the service.

Traditional trusted computing platforms like Terra [4]
take a compelling approach to this problem. For ex-
ample, Terra is able to prevent the owner of a physi-
cal host from inspecting and interfering with a compu-
tation. Terra also provides a remote attestation capability
that enables a remote party to determine upfront whether
the host can securely run the computation. This mecha-
nism reliably detects whether or not the host is running
a platform implementation that the remote party trusts.
These platforms can effectively secure a VM running in
a single host. However, many providers run data cen-
ters comprising several hundreds of machines, and a cus-
tomer’s VM can be dynamically scheduled to run on any
one of them. This complexity and the opaqueness of the
provider backend creates vulnerabilities that traditional
trusted platforms cannot address.

This paper proposes atrusted cloud computing plat-
form (TCCP) for ensuring the confidentiality and in-
tegrity of computations that are outsourced to IaaS ser-



C M N 1 N 2N 3 N 4U s e r P u b l i cN e t w o r k
I a a S P e r i m e t e rC l u s t e r S y s a d m i n

Figure 1: Simplified architecture of Eucalyptus.

vices. The TCCP provides the abstraction of a closed box
execution environment for a customer’s VM, guarantee-
ing that no cloud provider’s privileged administrator can
inspect or tamper with its content. Moreover, before re-
questing the service to launch a VM, the TCCP allows a
customer to reliably and remotely determine whether the
service backend is running a trusted TCCP implementa-
tion. This capability extends the notion of attestation to
the entire service, and thus allows a customer to verify if
its computation will run securely.

In this paper we show how to leverage the advances
of trusted computing technologies to design the TCCP.
Section 2 introduces these technologies and describes the
architecture of an IaaS service. Section 3 presents our
design of TCCP. Although we do not yet have a work-
ing prototype of TCCP, the design is sufficiently detailed
that we are confident that a solution to the problem under
discussion is possible.

2 Background

2.1 Infrastructure as a Service

Today, myriads of cloud providers offer services at vari-
ous layers of the software stack. At lower layers, Infras-
tructure as a Service (IaaS) providers such as Amazon,
Flexiscale, and GoGrid allow their customers to have
access to entire virtual machines (VMs) hosted by the
provider. A customer, and user of the system, is respon-
sible for providing the entire software stack running in-
side a VM. At higher layers, Software as a Service (SaaS)
systems such as Google Apps offer complete online ap-
plications than can be directly executed by their users.

The difficulty in guaranteeing the confidentiality of
computations increases for services sitting on higher lay-
ers of the software stack, because services themselves
provide and run the software that directly manipulates
customer’s data (e.g., Google Docs). In this paper we
focus on the lower layer IaaS cloud providers where se-
curing a customer’s VM is more manageable.

While very little detail is known about the internal or-
ganization of commercial IaaS services, we describe (and
base our proposal on) Eucalyptus [6], an open source
IaaS platform that offers an interface similar to EC2. Fig-

ure 1 presents a very simplified architecture of Eucalyp-
tus. This system manages one or more clusters whose
nodes run a virtual machine monitor (typically Xen) to
host customers’ VMs. Eucalyptus comprehends a set of
components to manage the clusters. For simplicity, our
description aggregates all these components in a single
cloud manager (CM) that handles a single cluster; we
refer the reader to [6] for more details.

From the perspective of users, Eucalyptus provides a
web service interface to launch, manage, and terminate
VMs. A VM is launched from a virtual machine image
(VMI) loaded from the CM. Once a VM is launched,
users can log in to it using normal tools such as ssh.
Aside from the interface to every user, the CM exports
services that can be used to perform administrative tasks
such as adding and removing VMIs or users. Xen sup-
ports live migration, allowing a VM to shift its physical
host while still running, in a way that is transparent to the
user. Migration can be useful for resource consolidation
or load balancing within the cluster.

2.2 Attack model

A sysadmin of the cloud provider that has privileged con-
trol over the backend can perpetrate many attacks in or-
der to access the memory of a customer’s VM. With root
privileges at each machine, the sysadmin can install or
execute all sorts of software to perform an attack. For
example, if Xen is used at the backend, Xenaccess [7] al-
lows a sysadmin to run a user level process in Dom0 that
directly accesses the content of a VM’s memory at run
time. Furthermore, with physical access to the machine,
a sysadmin can perform more sophisticated attacks like
cold boot attacks and even tamper with the hardware.

In current IaaS providers, we can reasonably consider
that no single person accumulates all these privileges.
Moreover, providers already deploy stringent security
devices, restricted access control policies, and surveil-
lance mechanisms to protect the physical integrity of the
hardware. Thus, we assume that, by enforcing a secu-
rity perimeter, the provider itself can prevent attacks that
require physical access to the machines.

Nevertheless, sysadmins need privileged permissions
at the cluster’s machines in order to manage the software
they run. Since we do not precisely know the praxis of
current IaaS providers, we assume in our attack model
that sysadmins can login remotely to any machine with
root privileges, at any point in time. The only way a
sysadmin would be able to gain physical access to a node
running a costumer’s VM is by diverting this VM to a
machine under her control, located outside the IaaS’s se-
curity perimeter. Therefore, the TCCP must be able to
1) confine the VM execution inside the perimeter, and 2)
guarantee that at any point a sysadmin with root privi-



leges remotely logged to a machine hosting a VM cannot
access its memory.

2.3 Trusted Computing

The Trusted Computing Group (TCG) [10] proposed a
set of hardware and software technologies to enable the
construction of trusted platforms. In particular, the TCG
proposed a standard for the design of thetrusted platform
module (TPM) chip that is now bundled with commodity
hardware. The TPM contains an endorsement private key
(EK) that uniquely identifies the TPM (thus, the physi-
cal host), and some cryptographic functions that cannot
be modified. The respective manufacturers sign the cor-
responding public key to guarantee the correctness of the
chip and validity of the key.

Trusted platforms [1, 4, 5, 9] leverage the features of
TPM chips to enableremote attestation. This mecha-
nism works as follows. At boot time, the host computes a
measurement listML consisting of a sequence of hashes
of the software involved in the boot sequence, namely
the BIOS, the bootloader, and the software implementing
the platform. TheML is securely stored inside the host’s
TPM. To attest to the platform, a remote party challenges
the platform running at the host with a noncenU . The
platform asks the local TPM to create a message contain-
ing both theML and thenU , encrypted with the TPM’s
private EK. The host sends the message back to the
remote party who can decrypt it using theEK ’s corre-
sponding public key, thereby authenticating the host. By
checking that the nonces match and theML corresponds
to a configuration it deems trusted, a remote party can
reliably identify the platform on an untrusted host.

A trusted platform like Terra [4] implements a thin
VMM that enforces aclosed box execution environment,
meaning that a guest VM running on top cannot be in-
spected or modified by a user with full privileges over
the host. The VMM guarantees its own integrity until the
machine reboots. Thus, a remote party can attest to the
platform running at the host to verify that a trusted VMM
implementation is running, and thus make sure that her
computation running in a guest VM is secure.

Given that a traditional trusted platform can secure the
computation on a single host, a natural approach to se-
cure an IaaS service would be to deploy the platform at
each node of the service’s backend (see Figure 1). How-
ever, this approach is insufficient: a sysadmin can divert
a customer’s VM to a node not running the platform, ei-
ther when the VM is launched (by manipulating the CM),
or during the VM execution (using migration). Conse-
quently, the attestation mechanism of the platform does
not guarantee that the measurement list obtained by the
remote party corresponds to the actual configuration of
the host where the VM has been running (or will be run-

C M N 1 N 2N 3 N 4U s e r
I a a S P e r i m e t e rT C C P S y s a d m i nE T ET C

Figure 2: The components of the trusted cloud comput-
ing platform include a set oftrusted nodes (N) and the
trusted coordinator (TC). The untrustedcloud manager
(CM) makes a set of services available to users. The TC
is maintained by anexternal trusted entity (ETE).

ning in the future). Therefore, the TCCP needs to provide
a remote attestation that guarantees the immutability of
the platform’s security properties in the backend.

3 Trusted Cloud Computing Platform

We present thetrusted cloud computing platform (TCCP)
that provides a closed box execution environment by ex-
tending the concept of trusted platform to an entire IaaS
backend. The TCCP guarantees the confidentiality and
the integrity of a user’s VM, and allows a user to de-
termine up front whether or not the IaaS enforces these
properties. Next section gives an overview of TCCP, and
Section 3.2 presents a detailed design.

3.1 Overview

TCCP enhances today’s IaaS backends to enable closed
box semantics without substantially changing the archi-
tecture (Figure 2). The trusted computing base of the
TCCP includes two components: atrusted virtual ma-
chine monitor (TVMM), and atrusted coordinator (TC).

Each node of the backend runs a TVMM that hosts
customers’ VMs, and prevents privileged users from in-
specting or modifying them. The TVMM protects its
own integrity over time, and complies with the TCCP
protocols. Nodes embed a certified TPM chip and must
go through a secure boot process to install the TVMM.
Due to space limitations we will not go into detail about
the design of the TVMM, and we refer the reader to [5]
for an architecture that can be leveraged to build a
TVMM that enforces local closed box protection against
a malicious sysadmin.

The TC manages the set of nodes that can run a cus-
tomer’s VM securely. We call these nodestrusted nodes.
To be trusted, a node must be located within the secu-
rity perimeter, and run the TVMM. To meet these con-
ditions, the TC maintains a record of the nodes located
in the security perimeter, and attests to the node’s plat-
form to verify that the node is running a trusted TVMM



N T C1 .2 .3 .4 . 1. nN

2. {MLTC , nN}
EK

p

TC
, n

TC

3. {{MLN , nTC}
EK

p

N
, TKP

N
}

TKP
T C

4. {accepted}
TKP

N

Figure 3: Message exchange during node registration.

implementation. The TC can cope with the occurrence
of events such as adding or removing nodes from a clus-
ter, or shutting down nodes temporarily for maintenance
or upgrades. A user can verify whether the IaaS service
secures its computation by attesting to the TC.

To secure the VMs, each TVMM running at each node
cooperates with the TC in order to 1) confine the exe-
cution of a VM to a trusted node, and to 2) protect the
VM state against inspection or modification when it is
in transit on the network. The critical moments that re-
quire such protections are the operations tolaunch, and
migrate VMs. In order to secure these operations, the
TCCP specifies several protocols (see Section 3.2). Due
to space constraints, we do not address other critical op-
erations such assuspend/resume allowed by Xen.

We assume anexternal trusted entity (ETE) that hosts
the TC, and securely updates the information provided to
the TC about the set of nodes deployed within the IaaS
perimeter, and the set of trusted configurations. Most im-
portantly, sysadmins that manage the IaaS have no priv-
ileges inside the ETE, and therefore cannot tamper with
the TC. We envision that the ETE should be maintained
by a third party with little or no incentive to collude with
the IaaS provider e.g., by independent companies analo-
gous to today’s certificate authorities like VeriSign.

3.2 Detailed Design

In this section we detail the most relevant TCCP mech-
anisms. We describe the protocols that manage the set
of nodes of the platform that are trusted (Section 3.2.1),
and the protocols that secure the operations involving
VM management, namely launching and migrating VMs
(Section 3.2.2). In these protocols, we use the fol-
lowing notation for cryptographic operations. The pair
〈Kp, KP 〉 represents the private-public keys of an asym-
metric cryptography keypair. Notation{y}Kx indicates
that datay is encrypted with keyKx. We use a specific
notation for the following keys:EKx denote endorse-
ment keys,TKx indicate trusted keys, andKx denote
session keys. Noncesnx, unique numbers generated by
x, help detect message replays.

3.2.1 Node management

The TC dynamically manages the set of trusted nodes
that can host a VM by maintaining a directory contain-

C M
N T C2 .3 . U1 .4 . F

1. {α, #α}KV M
{nU , KV M}

TKP
T C

2. {{{nU , KV M}
TKP

T C

, nN}
TK

p

N
,

N}
TKP

T C

3. {{nN , nU , KV M}
TKP

N

}
TK

p

T C

4. {nU , N}KV M

Figure 4: Message exchange during VM launch.

ing, for each node within the security perimeter, the
public endorsement keyEKP

N identifying the node’s
TPM, and the expected measurement listMLN . The
ETE makes some properties of the TC securely avail-
able to the public, namely theEKP

TC , theMLTC , and
theTKP

TC (identifying the TC). Both theMLN and the
MLTC express the canonical configurations that a re-
mote party is expected to observe when attesting to the
platform running on a node N or on the TC, respectively.

In order to be trusted, a node must register with the TC
by complying to the protocol depicted on Figure 3. In
steps 1 and 2, N attests to the TC to avoid an imperson-
ation of the TC by an attacker: N sends a challengenN

to the TC, and the TC replies with its bootstrap measure-
mentsMLTC encrypted withEK

p
TC to guarantee the

authenticity of the TC. If theMTC matches the expected
configuration, it means the TC is trusted. Reversely, the
TC also attests to N by piggybacking a challengenTC in
message 2, and checking whether the node is authentic,
and is running the expected configuration (step 3). The
node generates a keypair〈TK

p
N , TKP

N〉, and sends its
public key to the TC. If both peers mutually attest suc-
cessfully, the TC addsTKP

N to its node database, and
sends message 4 to confirm that the node is trusted. Key
TKN certifies that node N is trusted.

In the case that a trusted node reboots, the TCCP must
guarantee that the node’s configuration remains trusted,
otherwise the node could compromise the security of the
TCCP. To ensure this, the node only keepsTK

p
N in mem-

ory causing the key to be lost once the machine reboots.
The node is thus banned from the TCCP, since it will not
be able to decrypt messages encrypted with the previous
key, and must repeat the registration protocol.

3.2.2 Virtual machine management

We present the TCCP protocols to secure the VM launch
and migration operations. When launching a VM, the
TCCP needs to guarantee that 1) the VM is launched on
a trusted node, and 2) the sysadmin is unable to inspect
or tamper with the initial VM state as it traverses the path
between the user and the node hosting the VM. The ini-
tial VM stateα contains the VM image (VMI) (that can
be personalized and contain secret data) and the user’s



C M
N s T C6 . N dV M 3 .7 . 4 . 5 .1 .2 .

1. {{Nd, ns1}TK
p

N
, Ns}TKP

T C

2. {{ns1, TKP

Nd
}

TKP
Ns

}
TK

p

T C

3. {{KS , ns2}TK
p

Ns

, Ns}TKP
Nd

4. {{Ns, nd}TK
p

Nd

, Nd}TKP
T C

5. {{nd, TKP

Ns
}

TKP
Nd

}
TK

p

T C

6. {nd}KS

7. {V Mid,#V Mid}KS

Figure 5: Message exchange during VM migrate.

public key (used for ssh login)1. In practice, the user can
decide to use a VMI provided by the IaaS.

To enforce these requirements, the parties involved in
launching a VM follow the protocol depicted in Figure 4.
The protocol is designed on the fact that, before launch-
ing the VM, a user does not know which physical node
the VM will be assigned, and, among the components of
the service, only trusts the TC. First, the user generates a
session keyKV M , and sends message 1 to the CM con-
taining: α andα’s hash encrypted with the session key
(to protect the confidentiality and integrity of the initial
state), andKV M encrypted withTKP

TC . Encrypting the
session key with the TC’s public key ensures that only
the TC can authorize someone to accessα. The TC only
authorizes trusted nodes.

Upon receiving the request to launch a VM, the CM
designates a node N from the cluster to host the VM, and
forwards the request to N. Since the node needs to ac-
cessα in order to boot the VM, it sends message 2 to
TC which decryptsKV M on N’s behalf. This message is
encrypted withTK

p
N so that the TC can verify whether

N is trusted. If the corresponding public key is not found
in the TC’s trusted node database, the request is denied.
This would have been the case had the CM diverted the
request to a node controlled by a malicious sysadmin.
Otherwise, the node is reckoned to be trusted; the TC
decrypts the session key, and sends it to the node in mes-
sage 3, such that only N can read the key. N is now able
to decryptα, and boot the VM. Finally, the node sends
message 4 to the user containing the identity of the node
running the VM.

In live migration [3], the state of an executing VM is
transfered between two nodes: a source Ns and a des-
tination Nd. To secure this operation, both nodes must
be trusted, and the VM state must remain confidential
and unmodified while it is in transit over the network.
Figure 4 shows the sequence of messages involved in se-
curing the migration of a VM. In steps 1 and 2, Ns asks
TC to check whether Nd is trusted. In message 3, Ns ne-
gotiates a session keyKS with Nd that will be used to

1In current IaaS services, the user public key is injected in the VM
at launch time. A possible attack could be to inject more keysor other
malicious software.

secure the transfer of the VM state. Before accepting the
key, Nd first verifies that Ns is trusted (steps 4 and 5).
If both nodes mutually authenticate successfully, Nd ac-
knowledges the acceptance of the session key to theKS

(step 6), and, in message 7, Ns finally transfers the en-
crypted and hashed VM state to the Nd, guaranteeing the
confidentiality and integrity of the VM.

4 Conclusions and Future Work

In this paper, we argue that concerns about the confiden-
tiality and integrity of their data and computation are a
major deterrent for enterprises looking to embrace cloud
computing. We present the design of atrusted cloud
computing platform (TCCP) that enables IaaS services
such as Amazon EC2 to provide a closed box execution
environment. TCCP guarantees confidential execution of
guest VMs, and allows users to attest to the IaaS provider
and determine if the service is secure before they launch
their VMs. We plan to implement a fully functional pro-
totype based on our design and evaluate its performance
in the near future.

References

[1] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn. vTPM: virtualizing the trusted platform module.
In Proc. of USENIX-SS’06, Berkeley, CA, USA, 2006.

[2] Survey: Cloud Computing ’No Hype’, But Fear of
Security and Control Slowing Adoption. http:
//www.circleid.com/posts/20090226_cloud_
computing_hype_security/.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In Proc. of NSDI’05, pages 273–286, Berkeley, CA, USA, 2005.
USENIX Association.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: A Virtual Machine-Based Platform for Trusted Comput-
ing. In Proc. of SOSP’03, 2003.

[5] D. G. Murray, G. Milos, and S. Hand. Improving Xen security
through disaggregation. InProc. of VEE’08, pages 151–160, New
York, NY, USA, 2008.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. Eucalyptus: A Technical Re-
port on an Elastic Utility Computing Architecture Linking Your
Programs to Useful Systems. Technical Report 2008-10, UCSB
Computer Science, 2008.

[7] B. D. Payne, M. Carbone, and W. Lee. Secure and Flexible Mon-
itoring of Virtual Machines. InProc. of ACSAC’07, 2007.

[8] T. R. Peltier, J. Peltier, and J. Blackley.Information Security
Fundamentals. Auerbach Publications, Boston, MA, USA, 2003.

[9] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez, S. Berger,
J. L. Griffin, and L. v. Doorn. Building a MAC-Based Security
Architecture for the Xen Open-Source Hypervisor. InProc. of
ACSAC ’05, Washington, DC, USA, 2005.

[10] TCG. https://www.trustedcomputinggroup.org.


