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Abstract

We introduce Colocation Games as the basis of a gen-
eral framework for modeling, analyzing, and facilitat-
ing the interactions between the various stakeholders
in distributed/cloud computing environments, where re-
sources are offered in an open marketplace to indepen-
dent, rational parties interested in setting up their own
applications. Virtualization technologies enable the par-
titioning of such resources so as to allow each player
to dynamically acquire appropriate fractions of the re-
sources. When all the components are under the con-
trol of a single administrative domain, this leads to an
standard optimization problem, but when infrastructure
providers make available their resources in a market-
place, and from there customers acquire the resources,
the global optimization framework is no longer appropri-
ate. Rather, in this paper we use a game-theoretic frame-
work in which the assignment of players to resources is
the outcome of a strategic ”Colocation Game”. Although
we show that determining the existence of an equilibrium
for colocation games in general is NP-hard, we present a
number of simplified, practically-motivated variants of
the colocation game for which we establish convergence
to a Nash Equilibrium, and price of anarchy bounds. In
addition to these analytical results, we present an exper-
imental evaluation of implementations of some of these
variants. Experimental evaluation corroborates our ana-
lytical results and also illustrates how colocation games
offer a feasible distributed resource management alterna-
tive for self-organizing systems, in which the adoption of
a global optimization approach would be neither practi-
cal nor justifiable.
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‡ Supported in part by NSF awards CCF-0820138, CSR-0720604,

EFRI-0735974, CNS-0524477, and CNS-0520166.
♭ Supported in part by NSF award CCR-0635102.

1 Introduction

Motivation and Scope: Cloud computinghas emerged
as a compelling paradigm for the deployment of dis-
tributed applications and services on the Internet. By
relying on virtualized resources, users are able to easily
deploy, scale up or down, and migrate their applications
seamlessly across computing resources offered by one or
more infrastructure providers. More importantly, virtual-
ization enables performance isolation, whereby each ap-
plication is able to acquire appropriate fractions of shared
fixed-capacity resources, ensuring that the application
would meet minimal Quality of Service (QoS) require-
ments.

Cloud computingusers leverage resources (servers,
networks, and storage) hosted by aprovider and are
billed for what they use based on a preset resource-
quantum per unit-time price, like a metered utility. It
is common the case (e.g.[1]) where this cost is bourn by
the user whether or not the user consumes the full ca-
pacity of the instance. Clearly, it is possible for multiple
users to share the use of a cloud resource as long as their
aggregate utilization does not exceed its capacity. While
such colocation would be attractive to users (as it would
lower their costs) it is not attractive to the provider (as it
would reduce their profits). This suggests that providers
have no incentive to “optimize” the assignment of users
to resources – indeed, they have the exact opposite incen-
tive. This implies that it is up to each user in the cloud
to minimize its own cost through colocation with other
users.

To summarize, given a user’s ability to unilaterally mi-
grate from one resource to another in order to reduce
its own cost, cloud resource allocation and acquisition is
better viewed through a game theoretic perspective. To
that end, in this paper we introduceColocation Gamesas
the basis of a general framework for modeling, analyz-
ing, and facilitating the interactions between the various
stakeholders in a cloud computing environment.



Related work: Economic models have been used in
prior Grid resource management frameworks (e.g., [3,
4]). Typically, these models depend on a broker and users
abide to its decisions. This authority does not exist under
our model.

On the other hand, algorithmic game-theory has many
examples ([5, 9]) where the system self-organizes reach-
ing an equilibrium state, which may be within a bound
from the social optimum (Price-of-Anarchy). Within
these, the closest to our problem are cost-sharing games
[7, 2] which deal with the distribution of resource costs
among the users sharing it. In particular,cooperative cost
sharing games[7] deal with the problem of assigning
the shares of the costs such that the selected users are
all satisfied with the outcome. On the other hand, An-
shelevich et al[2] present a pure-strategies cost sharing
scheme applied to network formation games (and gen-
eralized to allocation of subsets of resources) where the
cost is equally shared among all users sharing a single
resource. The disadvantage of the first model is that in
many cases such self-stabilizing cost-share assignments
do not exist, may not be budget balanced or are not fair
amongst the users. The limitation of the second model is
that it only applies for unweighted resources.
Contributions: We present a game-theoretic model for
the interaction of rational, selfish players sharing re-
sources in a distributed environment, where users can
easily relocate their tasks subject to QoS constraints. The
general model describes the behavior of a wide range
of self-organizingdistributed systems, where all interac-
tions are guided by players’ selfish goals. Under this gen-
eral setting, we show that the existence of a Nash equi-
librium is an NP-complete problem. Next, we explore
the mechanism design problem of creating a cost func-
tion that induces a particular (desirable) user behavior.
In particular we explore the goal of maximizing resource
utilization so that all users can perform their tasks subject
to their QoS guarantees, but minimizing the total (social)
cost of the allocated resources. We present a simplified
version of the colocation game, calledthe Process Colo-
cation Game, for which we provide analytical bounds on
convergence and price of anarchy.

We also present empirical results obtained from two
sets of experiments. One based on synthetically-
generated workloads to explore the characteristics of the
game under a wide range of settings. The other based on
PlanetLab traces as to evaluate the game dynamics un-
der realistic scenarios. In addition to corroborating our
analytical findings, our experimental results suggest that
colocation games could be used as the basis for building
distributed, on-line, self-organizing systems, in which
the adoption of a global optimization approach (central-
ized or distributed) would be neither practical nor justifi-
able.

2 Colocation Games: Definition and Appli-
cations

Model and Notation: We use a labelled graphG =<
V, E > to model the infrastructure (cloud) resources that
are available to the users. Nodes inG represent stan-
dalone resources, whereas edges represent relationships
between these resources. Examples of standalone re-
sources include processors and storage. Examples of re-
lationships between standalone resources include com-
munication links and spatio-temporal adjacencies, both
of which would be represented as edges inG. Here we
note that edges inG may be directed or undirected.

Another labelled graphT describes the set of cloud
resources and underlying relationships that are neces-
sary to support a specific user application. We refer to
this graph as the user requested task graph. Vertices and
edges inT have the same meaning as those in the host-
ing graphG. In a hosting graph, labels specifysupplyat-
tributes such as unit capacities and unit prices of process-
ing or communication links. In a requested task graph,
labels specifydemandattributes such as the minimum
CPU utilization and storage needed by a standalone pro-
cess, or the minimum bandwidth tolerable by communi-
cating processes,etc. in the task.

As illustrated in Figure 1, a set of requested task
graphs (one per user) constitutes the overallworkloadto
be hosted on the infrastructure graphG. A mappingM
of the set of request graphs to the hosting graph con-
stitutes a configuration underscoring a specific assign-
ment of users to resources. Avalid configurationis one
wherein supply meets demand. Given a valid configu-
ration, the infrastructure provider expects to be paid for
any resource inG used by at least one task (user), but
not for (idle) resources to which no tasks were mapped.
The price charged per resource is fixed, independent of
the number of users sharing that resource. The cost in-
curred by a user is given by acost functionwhich ap-
portions the price of each resource inG among all users
with tasks mapped to that resource. The cost function can
be seen as the marketplace mechanism that governs and
induces symbiotic relationships among rational, selfish
agents (the users). In this paper, we adopt a specific form
of cost functions that may be conceived as fair – namely,
those that split the fixed cost of a resource among tasks
in some proportional (e.g., linear) fashion based on the
utilization of that resource by the various tasks assigned
to it.
The General Colocation Game (GCG):Given a host-
ing graphG =< V, E > labelled with aresource ca-
pacity vector(R) and aprice (P ), and given a collection
of tasks, each in the form of a graphTi =< Vi, Ei >,
where vertices and edges are labelled with aweightun-
derlying a resource utilization vector (W ), theGeneral



Figure 1: The Colocation Game

Colocation Gameis the pure-strategies game, in which
each task is able to make a move whereby, if possible,
the task modifies a valid mappingM into anotherM ′ so
as to minimize its own cost, given by a functioncM (Ti)
for the cost of taskTi when hosted inG according to a
mappingM :

cM (Ti) =
∑

j∈{Vi,Ei}

Pj

wij

Uj

(1)

wherewij is the weight (or utilization) imposed on re-
sourcej by taskTi, Pj is the price of the resource, and
Uj is the total utilization of the resource.

Thesocial costof GCG for a given mappingM is the
sum of the costs of all taskss =

∑
∀Ti

cM (Ti).
The Process Colocation Game (PCG):PCG is a re-
stricted (simpler) version of GCG. In a PCG, a task graph
consists of asingle vertexrepresenting an independent
process that needs to be assigned to a single resource. In
a PCG, the cost function for processi when mapped to
resourcej is cj(i) = Pj · wi/Uj.

Assuming all processes (users) are rational and selfish,
the only move that a process would make in PCG is one
that results in a reduction of its own costandwould also
benefit other processes with which the process would be
collocated as a result of the move. It can be easily shown
that a user’s move froma to b is avalid moveif it satisfies

U ′
b > Ub and Pb

U ′

b

< Pa

Ua
(2)

Applications of Colocation Games:We conclude this
section with a set of distributed resource management
problems, illustrating how each such problem may be
cast as a colocation game: 1.Content Distribution Net-
works: where the goal is to cache content chose to the
customers, and dynamic resource allocation is important
to cope with demand variability; 2.Service Oriented Ar-
chitectureswhere services need to be instantiated while
satisfying resource demands; 3.Virtual Machine Colo-
cation: where whole VMs may self-arrange to minimize
cost while satisfying their established SLAs.

Figure 2: Examples of Colocation Games with no Nash
Equilibria.

3 Analytical Results

Nash Equilibrium of GCG: The GCG does not neces-
sarily have a Nash Equilibrium (NE), as illustrated by
the example in Figure 2. Here the hosting graph is an
m-vertex ring, each vertex has unit capacity. Each of the
n (2 ≤ n < m) tasks consists of two connected vertices,
with utilization requirements1/2 < αi ≤ αmax < 1
and0 < ǫi < 1 − αmax, respectively. Feasible config-
urations are consecutive or disjoint nodes. Asn < m,
there will always be at least one edge (α → ǫ) connect-
ing a pair of unmatched nodes, as some segment of the
hosting graph will not be used. The cost function implies
that any task with a freeǫ node will move to match itsǫ
node to a neighbor’sα node. This leaves anotherǫ node
unmatched and the process repeats forever.

Theorem 1. Determining whether a GCG has a Nash
Equilibrium is NP-Complete.

Proof. Omitted due to space limitations. Please refer to
the full version [6].

Nash Equilibrium of PCG: As opposed to GCG, PCG
always converges to a Nash Equilibrium as stated by the
following theorem

Theorem 2. PCG converges to a Nash Equilibrium un-
der better response dynamics.

Since PCG may not converge to a minimal element,
it might be useful to know thePrice of Anarchy(PoA),
i.e. the ratio of the worst-case cost in an equilibrium
to the cost in a socially-optimal solution. Figure 3 il-
lustrates an example where the equilibria are not opti-
mal. Here resources have unit capacity, the configura-
tion on the left is the social optimal (OPT) and the one
on the right is a NE. The large processes have demands
1/2 < l ≤ 2/3− 2e/3, and the small processes have de-
mands = 2e/3, with 1/e ≥ 8. The PoA is2/3. In fact,
this example illustrates the worst case when resources are
homogeneous, as stated in the following theorem:



Figure 3: Example illustrating PoA for PCG with homo-
geneous resources

Theorem 3. The PoA for homogeneous PCG is 3/2 while
the PoA for heterogeneous PCG is 2.

It is also possible to bound the number of moves that
it takes for the game to reach a NE. In the case of homo-
geneous resources total number of moves isO(n2) if we
impose a minimum cost improvement threshold.
Better Response Computation:It can be shown by re-
duction from the integral knapsack problem that the best
response computation is NP-complete. Fortunately the
convergence condition only requires a better response,
which can be computed using either a dynamic program-
ming technique (DPKP) or a branch & bound search. For
the latter we implemented two versions, one based on the
bread-first search (BFS), and the other on a depth-first
search (DFS).

4 PCG: Experimental Evaluation

Data Sets and PCG Variants: In our experiments,
we used synthetically-generated as well as trace-driven
workloads, which we applied to unidimensional and mul-
tidimensional variants of PCG under both a homoge-
neous and heterogeneous resource model. Oursynthetic
workloadsgive us the flexibility in exploring the param-
eter space and more importantly, enable us to experiment
with workloads for which we know (by construction)
the socially-optimal solution. Ourtrace-driven work-
loadswere constructed using publicly available Planet-
Lab traces of CoMon [8]. The traces we used give us
snapshots of PlanetLab server capacities as well as the
utilization of the slices assigned to the various tasks col-
located on each server. PlanetLab traces describe multi-
dimensional server capacities as well as slice utilizations
(corresponding to the utilizations of a slice’s CPU, mem-
ory, uplink, and downlink). This makes this traces also a
good test case for multidimensional PCG.
Metrics: To characterize the PCG game dynamics,
we evaluated a number of metrics, namely: (1) the
colocation ratio which we define to be the ratio of
worst/optimal social cost (for synthetic workloads) and
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Figure 4: Median (top) and worst-case (bottom) coloca-
tion ratio (synthetic)

of worst/best social cost (for trace-driven workloads); (2)
the total number of movetrials until an equilibrium is
reached; and (3) the total number of actualmovesuntil
an equilibrium is reached. The colocation ratio charac-
terizes the (in)efficiency of the colocation resulting from
playing the game, and is bounded by the price of anar-
chy (PoA). The number of trials gives us insight as to the
total time it takes for the game to reach an equilibrium.
The number of moves gives us insight in the overhead in-
volved in relocating players (tasks) since each relocation
involves migration costs,etc.

As shown earlier, verifying that the game is at a NE
is an NP-hard problem. Thus, the criterion we used to
declare that an equilibrium has been reached was to set a
threshold on the number of consecutive trials attempted
without resulting in a move. The thresholds we used
were such that doubling them (e.g., from 500 to 1,000)
did not produce a significant change our metrics.
Colocation Efficiency for Synthetic Workloads: Fig-
ure 4 shows the median and worst case (over 100 sam-
ples) of the colocation ratios for synthetically-generated
workloads in both homogeneous and heterogeneous set-
tings. Recall that in a homogeneous (heterogeneous) set-
ting all resources are (not) of equal capacities. These re-
sults show that the PoA bound (of3/2 for homogeneous
cases and2 for heterogeneous cases) for the colocation
ratio holds for the median (1D). In the worst-case, there
were a few samples above the bound, which we attribute
to the approximate better-response computation and the
threshold for detecting an equilibrium.

The results in Figure 4 show that the colocation ratio
tends to decrease (i.e., better efficiency) as the number of
players increases, which bodes well for large-scale de-
ployments. Also, our results show that colocation effi-
ciency was basically independent of the better-response
heuristic in use.
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Homogeneous Heterogeneous

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0  10 20 30 40 50 60 70 80 90 100

tr
ia

ls

Game size (processes)

BFS
DFS

DP KP

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 0  10 20 30 40 50 60 70 80 90 100

Game size (processes)

BFS
DFS

DP KP

Figure 6: Worst-case trials (synthetic)

Colocation Ratio for PlanetLab Workloads: Figure 5
shows the median colocation ratio (ratio of worst/best
social cost) using the task specifications derived from
the PlanetLab traces. These results imply a relatively
small colocation ratio, which as with synthetic workloads
seems to be independent of the better response heuristic
used. As shown in Figure 5, the worst-case colocation
ratios were not too far off.
Convergence Speed and Overhead:Figures 6 and 7
show the number of trials it takes to reach equilibrium.
They indicate that the number of trials is directly related
to the number of tasks in the system and fairly indepen-
dent by the heuristic used to compute the better response.
The relation is essentially linear for unidimensional PCG
and follows a power law for higher dimensionality PCGs.

5 Conclusion

Colocation Gamesoffer a natural paradigm for modeling
and analyzing the dynamics that are likely to result when
rational, selfish parties (users) interact in an attempt to
minimize the individual costs they incur to secure the
shared infrastructure resources necessary to support the
QoS or SLA requirements of their applications. Coloca-
tion games offer an attractive alternative to approaches
that require such parties to trust infrastructure providers
(who have no vested interest in minimizing user costs,
and may indeed have the exact opposite incentive) or
those that expect such parties to be altruistic or to accept
best-effort (as opposed to reservation-based) approaches
that do not guarantee performance isolation.

In this paper we introduced the general colocation
game (GCG) as well as the process colocation game

Median Worst Case
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(PCG), a more restricted version of GCG, along with
many variants for which convergence and PoA results
could be derived. Also, using both synthetic and trace-
driven workloads, we presented results from extensive
empirical performance evaluation of practical and scal-
able implementations of the strategies underlying these
games.

Colocation games are not only valuable as modeling
and analysis tools, but also they provide a solid frame-
work upon which purely distributed resource acquisi-
tion and management protocols may be conceived for
emerging cloud computing, grid, and peer-to-peer over-
lays. In this paper we have shown that although best re-
sponse computation may be expensive, computationally-
efficient better-response heuristics are quite promising.
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