
Towards Optimizing Hadoop Provisioning in the Cloud
Karthik Kambatla∗, Abhinav Pathak∗, Himabindu Pucha‡

∗Purdue University, ‡IBM Research Almaden

Abstract
Data analytics is becoming increasingly prominent in a vari-

ety of application areas ranging from extracting business intel-
ligence to processing data from scientific studies. MapReduce
programming paradigm lends itself well to these data-intensive
analytics jobs, given its ability to scale-out and leveragesev-
eral machines to parallely process data. In this work we argue
that such MapReduce-based analytics are particularly synergis-
tic with the pay-as-you-go model of a cloud platform. How-
ever, a key challenge facing end-users in this environment is
the ability to provision MapReduce applications to minimize
the incurred cost, while obtaining the best performance. This
paper first motivates the importance of optimally provisioning a
MapReduce job, and demonstrates that existing approaches can
result in far from optimal provisioning. We then present a pre-
liminary approach that improves MapReduce provisioning by
analyzing and comparing resource consumption of the applica-
tion at hand with a database of similar resource consumption
signatures of other applications.

1 Introduction
The rising number of web applications serving millions
of Internet users and dealing with petabytes of data, the
advent of cheap storage capacity resulting in a tremen-
dous growth in data retention, and the availability of
cheap resources to process that data, have all reinstated
the need for large-scale data processing. Extracting in-
formation and intelligence from these data sets, com-
monly referred to asdata analytics, is an important data-
intensive application stemming from these huge corpus
of data. Data analytics is shown to be useful in several
scenarios—analytics enable web data mining (e.g., web
indexing and search), enable extracting business intelli-
gence (e.g., click stream analysis for increasing ad rev-
enue), enable processing data sets from scientific studies
and simulations (e.g., research in natural language pro-
cessing, seismic simulation, scene completion).

Analyzing these large volumes of data demands a
highly scalable solution. MapReduce [6] is one popular
approach that enables data analytics by parallely process-
ing data, partitioned among large number of commodity
machines. MapReduce can easily scale out to clusters of
hundreds of commodity nodes as the data and processing
demands scale, and can automatically handle failures in
these large settings. Hadoop [1] is an open-source imple-
mentation of MapReduce, primarily supported by Yahoo,
and also in use at Facebook, Amazon, Baidu etc.

This paper argues that data analytics enabled by
MapReduce are particularly synergistic with theutility
computing or pay-as-you-go model enabled by the cloud

platform. An interesting artifact of this utility nature of
the cloud paradigm is that the cost of using 1000 ma-
chines for 1 hour is the same as using 1 machine for
1000 hours. Thus, a MapReduce job can potentially im-
prove its performance while incurring the same currency
cost by acquiring several machines and executing in par-
allel. A physical cluster, on the other hand, places a hard
upper bound on the number of machines available, and
hence the achievable performance. Further, data analyt-
ics operations that are initiated periodically or sporad-
ically as background batch jobs can allocate resources
on-demand, and relinquish them after the job is done,
thereby paying only for the used resources.

In fact, analytics enabled by the cloud platform was
successfully leveraged on several occasions [3]. For
example, 200 servers on Amazon EC2 (equivalent of
1407 hours of virtual machine time) were used by The
Washington Post to convert 17481 pages of data in non-
searchable PDF format of Hillary Clinton’s official white
house schedule into friendly WWW format within a total
time of 9 hours. The New York Times converted 11 mil-
lion scanned articles to PDFs using 100 virtual machines
in a single day. A positive reinforcement for analytics
in the cloud comes from the recent Amazon Web Ser-
vices announcement to provide Elastic MapReduce [2]
built using their compute cloud, EC2, and their storage
cloud, S3.

Given the advantages of performing Hadoop jobs atop
a cloud platform, a key challenge facing end-users is ef-
ficiently provisioning such Hadoop jobs. Provisioning
a Hadoop job entails requesting optimum number of re-
source sets (aresource set (RS) is a set of resources
sold as a single unit. e.g., standard and high-cpu in-
stances sold by Amazon web services), and configuring
Hadoop parameters such that each resource set is maxi-
mally utilized. An optimization objective that we believe
to be very relevant to end-users is to minimize currency
cost incurred to perform a job, while maximizing perfor-
mance (lower execution time). We argue that an end-user
provisioning a Hadoop job should choose the resource
set parameters to achieve this objective.

Existing solutions such as [2, 5, 4] simply automate
the deployment of Hadoop tasks by setting up the re-
quired software, preloading data, and generating default
configuration files. They, however, expect end-users to
provide appropriate resource-set parameters. Even end-
users have no tools to-date at their disposal to determine
the optimum configuration, and hence these parameters

1

Figure 1: Overview of the optimization process to provision
Hadoop jobs in the cloud.

are typically chosen using best practices. Moreover, we
believe that existing approaches to provisioning other
applications in the cloud are not immediately relevant
to Hadoop-based applications; existing applications in-
corporate a dynamic component to adapt to workload
changes and adjust their provisioning, while the work-
load from Hadoop applications could be known com-
pletely apriori.

This paper argues that simply automating Hadoop de-
ployment is not good enough, and choosing parame-
ters based on best practices is not robust enough. Our
contributions are twofold: (1) We first demonstrate that
best practices for configuring resource set parameters are
not robust across different applications, and can cause
far from optimal provisioning. (2) We then present our
preliminary technique that improves provisioning of a
hadoop job by taking resource consumption statistics of
the job into account.

An overview of our approach to optimize provision-
ing of Hadoop jobs in the cloud is presented in Figure 1.
Our approach consists of two components: (1) RS Maxi-
mizer: This component is responsible for calculating the
optimum parameters for the Hadoop job such that each
resource set is fully utilized. (2) RS Sizer: Once each
resource set is being fully utilized, this component deter-
mines the number of resource sets required such that the
cost is minimized while performance is maximized. Un-
derutilized resource sets can potentially cause RS Sizer
to pick larger number of resource sets, thereby increasing
the incurred cost. Note that we focus on RS Maximizer
for the scope of this paper, and present preliminary re-
sults. We acknowledge that RS Sizer is still a work in
progress.

2 Hadoop Background
Hadoop [1] is an open source implementation of the
MapReduce [6] programming model. A MapReduce job
usually1 consists of three phases—map, copy and reduce.
The input data is split into chunks of 64MB size (by de-
fault). In the map phase, a user defined function oper-

1A MapReduce task could potentially have several MapReduce
stages.

ates on every chunk of input data producing intermediate
key-value pairs which are stored on local disk. One map
process is invoked to process one chunk of input data.
In the copy phase, the intermediate key-value pairs are
transferred to the location where a reduce process would
operate on the intermediate data. In reduce phase, a user
defined reduce function operates on the intermediate key-
value pairs and generates the output. One reduce process
is invoked to process a range of keys.

Hadoop has over 180 configuration parameters. Ex-
amples include number of replicas of input data, number
of parallel map/reduce tasks to run, number of parallel
connections for transferring data etc. Of these several
parameters, this paper specifically focuses on two that
influence the resource utilization in a resource set.

mapred.tasktracker.map.tasks.maximum and
mapred.tasktracker.reduce.tasks.maximum respec-
tively set the maximum number of parallel mappers
and reducers that can run on a Hadoop slave. Each
map/reduce task runs as a separate process and hence
a higher number for these parameters translates into
higher parallelization. But too high a value can po-
tentially cause resource contention and degrade overall
performance. For example, setting a very high value for
this parameter results in large number of simultaneous
disk reads results in disk contention. Setting a low value,
on the other hand, might under-utilize the resources, and
once again reduce performance. Thus, the number of
map and reduce tasks per resource set must be chosen
such that the resources are maximally utilized, resulting
in optimum performance.

3 RS Maximizer
3.1 Motivation: one size does not fit all!
This section demonstrates that static, default parameters
cannot maximize resource set utilization across all ap-
plications, thereby motivating the need for the RS Maxi-
mizer component of our provisioning algorithm.

Hadoop installation comes with a default set of values
for all the parameters in its configuration. The default
values of these parameters are based on typical configu-
ration of machines in clusters and requirements of a typ-
ical application. The optimum parameters that maximize
resource utilization, however, are dependent on the re-
source consumption profile of an application. For ex-
ample, a map task insort application using Hadoop
(implemented as merge-sort) reads each chunk of data,
generates<key, value>, and outputs equal amount of
intermediate data, making it quite io-intensive. On the
other hand, a map task ingrep needs to search for
a regular expression which is limited by the CPU re-
sources. Thus, each application has a different bottleneck
resource (the resource with the highest utilization frac-
tion compared to other required resources), and differ-
ent bottleneck resource utilization, and thus needs to pick

2

a different (nummaps, numreduces) combination such
that the bottleneck resource is maximally utilized. Note,
however, that statically chosen large values for these pa-
rameters may cause resource contention and lower over-
all performance. Similarly, statically chosen small values
may result in under-utilization of resources.

We now experimentally demonstrate the optimum
(num maps, numreduces) for a given application and
resource set, and the impact of sub-optimum configura-
tion parameters. To measure the impact of these parame-
ters on application performance, we ran two experiments
for various combinations of (nummaps, numreduces):
(1) grep (example available with Hadoop source code)
on Hadoop on a cluster of 8 nodes, and an input of 80
GB. Each node in the cluster consists of 8 cores 2.2 GHz
CPUs and two SATA drives. All nodes are connected us-
ing a Gigabit switch. (2)wordcount on Hadoop on a
cluster of 4 nodes, and an input of 1 GB. Each node con-
sists of a 3 GHz dual core CPU, 2 GB RAM, 146 GB 10K
SCSI drive, and a 1 Gbps NIC. All nodes are connected
using a Gigabit switch. A replication factor of two was
used in both experiments.

Figure 2 shows the time taken bygrep to search for
a simple regex string in 80 GB of randomly generated
data as the number of maps and reduces are varied. Fig-
ure 2 shows that: (1) Time taken forgrep varies with
number of maps, but is independent of number of re-
duces, (2) The configuration with 8 maps yields the best
performance and runs 4× faster when compared to the
configuration with 1 map and roughly 1.5× faster when
compared to configuration with 24 Maps. Performing
regex on input stream of data is inherently computation-
ally intensive and hencegrep is CPU dependent. Since
each node in the cluster has 8 cores, 8 maps potentially
achieve close to optimum CPU utilization. (3) Finally,
increasing number of maps from 4 to 8 only marginally
improves the performance, whereas changing maps from
1 to 4 almost quadruples the performance. Here, we ob-
serve that the disk bandwidth begins to saturate before
all the CPUs are fully utilized, giving rise to a small
improvement from 4 to 8 maps. Increasing the num-
ber of maps further causes disk thrashing as a result of
which the performance decreases. Similar results were
observed in the 4 node cluster.

We also ranwordcount on Hadoop to count the
number of occurrences of each word in a randomly gen-
erated input data of size 1 GB. The optimum configura-
tion for wordcount is 2 maps and 4 reduces for the
4 node cluster (hard to explain). For bothgrep and
wordcount, the default configuration of (2 maps, 2 re-
duces) consumed significantly more time than the opti-
mum configurations.

In summary, our experiments demonstrate that: (1)
Hadoop parameters (number of mappers and reducers)

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

T
im

e
(S

ec
on

ds
)

Number of Reduces

Grep - 80GB

1 map
4 maps
8 maps

16 maps
24 maps

Figure 2:Time taken togrep a simple string from 80 GB of
input data. Each line corresponds to a fixed number of maps.

affect the utilization of resources for a given resource
set, and hence the overall performance. Too few map-
pers/reducers per resource set result in under-utilization
of resources. Too many will induce contention and lower
system throughput. (2) Parameter values that fully uti-
lize a bottleneck resource are shown to be optimum. (3)
Since different applications have different bottleneck re-
sources, their optimum parameter values depend on the
size of resources in the resource set and it is non-trivial
to find them.

3.2 Signature-based Approach: Design
and Preliminary Evaluation

Our technique for determining the optimum configura-
tion parameters for a new Hadoop application, given a
resource set, is as follows: we first generate resource
consumption signature (described later) for the new ap-
plication by running the application on a small fraction
of input data (few of the many chunks of the actual in-
put), using a small number of resource sets (nodes). We
then match the resource consumption signature with the
signatures of other applications for which we have al-
ready computed the optimum configuration. We main-
tain a database of resource consumption signatures for a
few applications for which we know the optimum config-
uration parameters. The new application is then assigned
the optimum configuration of the application based on
the closest signature match. Intuitively, two applications
having similar resource consumptions would face similar
bottlenecks and have similar ratio of resource require-
ments (CPU:Disk:Network). As a result they would ex-
hibit optimal performance at similar configurations.

Figure 3 details our system. Hadoop applications usu-
ally operate on massive volumes of data split into chunks
of 64 MB (by default). Our system takes entire input
data and generates a copy of a small part (say 1GB) of
it. It then runs the application on the smaller data on a
subset of nodes. It monitors the usage of three basic re-
sources on all the nodes in the cluster: CPU, disk and
network. We use vmstat and ifstat tools to measure CPU
usage (in terms of User, System, Idle and Wait percent-
ages), disk usage (# of blocks in and out) and network

3

usage (bytes/sec into and out of network card) every sec-
ond. All the usage measurements are normalized using
their respective maximum values.

Signature Generation: Usually, a Hadoop task con-
sists of a map phase, a copy phase and a reduce phase [6].
Ideally, a resource consumption signature should be gen-
erated for each phase and be compared to signatures of
the same phase from other applications, to independently
determine nummaps, and numreduces. Unfortunately
such an approach has practical limitations: First, the
three phases need not be disjoint in time. For exam-
ple, a copy phase could begin before all the maps are
completed. Second, an application may contain multi-
ple MapReduce phases (grep for example). Our design,
thus, favors phase agnostic signatures, generated as fol-
lows: We split the entire job run inton (a pre-choosen
number) intervals with each interval having the same du-
ration. For theith interval we compute the average re-
source consumption for each,rth, resource. For each
node,m, in the cluster we generate a resource consump-
tion signature set,Sr

m, for everyrth resource as

Sr
m = {Sr

m1
, Sr

m2
, ..., Sr

mn}

whereSr
mi = mean of normalizedrth resource consump-

tion for ith interval onmth node during the job run. We
store all such signature sets for an application run.

Signature Comparison: To measure similarity be-
tween two normalized resource consumption signatures
Sr1

m andSr2

m for a particular resourcer for a nodem for
Hadoop applications1 and2 respectively, aχ2 [7] is cal-
culated as:

χ2

Sr1
m

,Sr2
m

=

n∑

i=1

(Sr1

mi − Sr2

mi)
2

(Sr1

mi + Sr2

mi)

χ2 represents the vector distance between two signatures
for a particular resourcer in time-interval vector space.
We compute scalar addition ofχ2 for all the resource
types2. Lower value of sum ofχ2 indicates more similar
signatures. We choose the configuration of the applica-
tion that has the closest signature distance sum to the new
application.

Database Bootstrapping: To create a database of
signatures, we generated signatures for a few appli-
cations with default configuration. For these applica-
tions, we also found out the optimum configuration (in
terms of MapReduce numbers) by running the chosen
applications at a variety of combinations of (nummaps,
num reduces). We store the signatures and the corre-
sponding optimum configurations for these applications
in our database. We chose the example applications
(from the ones provided with Hadoop source)—grep
(map intensive),sort (copy intensive),wordcount.

2Though a simple scalar addition for different resources is naive,
we will investigate other methods to match signatures for each resource
separately.

Figure 3:RS Maximizer: Block diagram

We also plan to incorporate signatures fromgridmix
with various ratios of input:intermediate size:output data.

3.3 Preliminary Results

Our technique is implemented by scripting in Perl to run
the application over Hadoop as per our system diagram
(Fig. 3). We start the measurement tools (vmstat and
ifstat to record the cpu, disk and network usage of the
Hadoop application) and run the application on small
chunk of data (1 GB) using default configuration and
then compute the signature for the application.

CPU and disk signatures for a given application are
stable. To observe the noise in our signature mechanism
we ransort on 1 GB of data twice on our 8 node cluster
with default configurations . We computed the signature
distances between the generated signatures of these two
runs. We plot the signature distances between these two
runs for all the resource types (us, sy, wa, id, bi, bo, ni,
no = % of CPU in user time, system time, waiting time,
ideal time, disk block in, disk block out, network in and
network out respectively) in Figure 4. We observe that
noise (signature distance) is relatively higher in network
resources than others.

Signatures are independent of input data size.We
next plot signature distances forsort run on 1 GB data
vs. sort run on 10 GB data with default configuration.
Figure 4 plots the signature distances. We observe that
different runs of the same application on different data
sizes results in very close signatures. The signature dis-
tances betweensort 1 GB vs. 10 GB are about 0.1.

Different applications have widely separated signa-
tures if their bottleneck resources are different. Runs
of different applications result in quite distant signatures
if the applications’ behaviors are different.sort and
grep have very different requirements.grep consumes
most of the time in the map phase (mostly CPU compu-
tation) where assort consumes the maximum time in
copy phase. This difference manifests in the signature
distance—the signature distance is about 1 in most cases.

Signature based technique successfully predicts
optimum configuration for different applications.
For testing our system with a couple of unknown

4

Figure 4: Signature Distances (on y-axis) for various re-
sources on X-axis for(i) Sort 1G vs Sort 1G;(ii) Sort 1G vs Sort
10G;(iii) Sort 1G vs Grep 1G.

applications, we chosematrix-addition and
multifile-wordcount. matrix-addition
takes in two matrices; the map outputs (row, column)
as the key and the value as the value; the reduce adds
the values with the same key (row, column) and out-
puts the result.multifile-wordcount implements
wordcount with the only difference that it takes input
as multiple files instead of a single file. We ran these two
applications with default (2 maps, 2 reduces) configura-
tion on smaller data (1 GB) and compare the signatures.

Both applications closely matched the signature of
wordcount from our database. Both applications ob-
tain peak performance with the optimum configuration of
wordcount. Multifile-wordcount is very simi-
lar to wordcount with just difference in data formats.
It is therefore intuitive for them to have similar opti-
mum configuration. Interestinglysort, wordcount
andmultifile-wordcount had near similar signa-
tures and they observe peak performance with same con-
figurations. This is because all the three applications
have similar map phase (just read the input data and out-
put intermediate key-value pairs with word count and
multifile-wordcount appending a “1” for each
word), and a similar reduce phase (with the difference
that wordcount just adds up the number of occurrences of
each word).matrix-addition exhibits similar char-
acteristics aswordcount.

Improving Database Diversity: The accuracy of our
signature match critically depends on the diversity of
sample applications in our signature database. However,
adding a new signatures into the database is a heavy-
weight process; our technique relies on a brute-force
approach to calculate the optimum configuration. We
are currently investigating a closed loop approach that
will improve both the accuracy of our configuration esti-
mates, as well as add new samples to the database. For
every new application run on the cluster with our tech-
nique, we predict the optimum configuration and run
the application with optimum configuration (as noted
above). Simultaneously, we also monitor the resource
consumption during this run to identify a bottleneck re-
source(s) for the application, and ensure that it is satu-

rated. If resource(s) are not saturated, we then search
for a optimum configuration by intelligently increasing
(num maps, numreduces) such that the resource with
the highest utilization saturate. After this feedback-
driven choice of optimum configuration, we add the new
application signature to our database.

4 Discussion and Future Work
An interesting artifact of the cloud paradigm is that the
cost of using 1000 machines for 1 hour, is the same as
using 1 machine for 1000 hours. This observation im-
plies that a Hadoop job’s performance can potentially be
improved, while incurring the same cost, since Hadoop
is built to exploit parallelism. Thus, a key goal of the
RS Sizer is to leverage this observation while searching
for the optimum size of resource sets. RS Sizer scales
out a Hadoop job if the gain in performance due to paral-
lelism outweighs the corresponding loss in performance
from distributing the processing. We are currently ex-
ploring approaches to estimate both the loss and gain in
performance of a Hadoop job. Intuitively, one downside
of increasing the number of resource sets is the network
bandwidth required to coordinate the map and the reduce
phase (i.e., copy phase). We are currently exploring tech-
niques to estimate this loss in performance as well as the
overall scaling of execution time with increasing number
of nodes to design appropriate RS sizing algorithms.

This work proposes an approach to minimize cost, and
maximize performance in a cloud setting. We, however,
argue that if our resources were not virtualized, our ap-
proach is still beneficial since maximizing the utilization
of each resource set optimizes the performance of the
Hadoop job at hand, and identifying unused resources
can lead to potential energy savings.

Acknowledgments
We would like to thank the anonymous reviewers for
their valuable feedback on this work; Prasenjit Sarkar,
Prashant Pandey, and Karan Gupta for helpful discus-
sions about Hadoop performance. This work was sup-
ported in part by the National Science Foundation under
grant IIS-0844500.

References

[1] Hadoop. http://hadoop.apache.org.

[2] Amazon Elastic MapReduce. http://aws.amazon.com/elasticmapreduce/.

[3] Amazon Web Services: Case Studies.
http://aws.amazon.com/solutions/case-studies/.

[4] Cloudera. http://www.cloudera.com/.

[5] Hadoop on demand. http://hadoop.apache.org/core/docs/current/hod.html.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing
on large clusters. InProc. of OSDI, 2004.

[7] R. O. Duda, P. E. Hart, and D. G. Stork. Chapter 8. pattern classi-
cation. 2nd edition. InA Wiley-Interscience Publication, 2001.

5

