
Refactoring human roles solves systems problems

Jeremy Elson and Jon Howell
Microsoft Research

Abstract

Several persistent problems in system administration,
deployment, configuration, and usability stem from a
common root: the conflation of roles between devel-
opers, users, hardware wranglers, and software integra-
tors. We develop a taxonomy of such conflations, and
show that identifying each conflation characterizes one
or more familiar systems problems. Furthermore, the
taxonomy suggests directions for solving these prob-
lems: refactor components to produce interfaces that
cleanly decouple these roles. Recent trends in web-
based client applications and cloud-based services have
demonstrated the feasibility of such changes. We de-
scribe recent projects our group has done that further de-
couple the roles, and we use the taxonomy to propose
new projects.

1 Introduction

Today’s computing landscape is defined largely by the
commoditization of software. In other words, compa-
nies that make aluminum widgets don’t need to learn
how to write software in order to use computers for their
accounting. Software specialists—that is, developers—
write the software, and sell it to everyone who needs to
do accounting. The developers can afford to spend a lot
of time making the software better because that time is
amortized over everyone who buys it. Meanwhile, wid-
get companies can spend time on more widget research
rather than software development. Everyone benefits:
the global increase in efficiency yields both better soft-
wareand better widgets.

Commodity software became ubiquitous because it
decouples two distinct roles that were once conflated:

• developer—writes software

• user—uses software to get work done

These roles are well known. However, there are two
more roles, equally pervasive but less often discussed,
that remain conflated, both with each other and with the
first two roles:

• hardware wrangler—buys, powers, cools, net-
works, and repairs hardware

• software integrator—ensures independent software
components work together, applies security patches

We observe that many of the frustrations that people
feel towards computers today can be neatly categorized
as an unnecessary coupling of two or more computing
roles. I can’t buy a new computer (as a hardware wran-
gler) because I don’t have time to reinstall all my soft-
ware (as a software integrator).

Explicitly separating these four roles also sheds light
on the excitement around recent innovations in cloud
computing: they are appealing precisely because they
decouple the roles. For example, in Amazon’s EC2 [7],
software integrators only need to define virtual machine
images; Amazon wrangles the hardware that runs them.
Microsoft’s Azure [4] and Google’s App Engine [2] de-
couple development from both hardware wrangling and
software integration: Developers only provide a program
that handles individual web requests, while Microsoft
and Google integrate DNS, virtual machines, web server
software and load-balancers, ensuring every web request
that arrives is routed to an instance of the developer’s
program.

In both of these cases, just as in the creation of the
software industry, everyone benefits; there is a global in-
crease in efficiency. People who want to be web devel-
opers or software integrators can do so without spending
time building datacenters. Datacenter experts can lever-
age their expertise over a larger set of users.

This paper has two goals. First, in Section 2, we show
that conflations of these four roles account for many of
today’s problems in both desktop and server computing.



We consider a series of role conflations and describe the
consequent problems. Second, we assert that framing the
problem this way provides a useful blueprint for solu-
tions: roles should be decoupled by introducing clean
interfaces at role boundaries. Section 3 describes some
projects we have built that follow this blueprint, and pro-
poses new projects to solve problems at other boundaries.

2 Problems

The introduction described four computing roles:
hardware wrangler, developer, software integrator, and
user. This section examines every pair of these roles, and
considers the problems that arise when they are unneces-
sarily conflated. Our analysis is summarized in Table 1.
Only user anddeveloper are consistently decoupled to-
day; the other pairs give rise to long-standing and famil-
iar problems.

2.1 user and software integrator

Perhaps the most troublesome and well-known confla-
tion is of user and software integrator. In today’s desk-
top computing world, users are constantly forced into
managing their software and operating systems. Systems
researchers pay much attention to user’s configuration
problems [18, 14, 16]. But why are users in the business
of configuring software in the first place? That Grandma
needs tools to help her manage her registry, install new
device drivers, or try to recover from “DLL Hell” is clear
evidence of a conflation of roles.

2.2 user and hardware wrangler

Most desktop computing users wrangle their own
hardware. But why should who owns the hardware be
so closely coupled to who can use the hardware? Users’
state, unfortunately, is often tied to the hardware they’ve
purchased. Decoupling has benefits: An Internetkiosk
becomes as useful as your laptop. Adead hard disk be-
comes a minor inconvenience; an assistant can replace it
as easily as refilling the paper in a printer. You can bor-
row a friend’s laptop hardware, using the software you
are familiar with, and she need not worry about exposing
personal data to you.

The vision of “Your environment available anywhere”
has been long held by researchers, but can now be seen in
a new light: the user of a software shouldn’t have to care
who wrangled the hardware, or when. The roles should
be deconflated.

2.3 developer and hardware wrangler

People who build scalable server applications use two
terms to describe two different scaling strategies:scaling
up means run an application on an ever-more-powerful
computer, with faster multicore CPUs, more RAM, and
more disks. Scaling out means running on more and
more computers connected by a network. Why does this
distinction exist? In both cases, a hardware wrangler is
buying more CPUs, RAM, and disks. Why is develop-
ment somehow fundamentally different when those re-
sources come with extra cases and power supplies? The
consequence is that the developer of a high-scale appli-
cation cannot escape an intimate knowledge of the hard-
ware wrangler’s job: the topology and configuration of
the actual cluster running the software.

Of course, a single machine differs from a cluster in
both its failure modes and its inter-CPU access latencies.
But are these differences so fundamental as to require a
completely different development model, as they do to-
day?

Even software written against the scale-out model, at
large enough scales, must plan for “rack locality.” Devel-
opers who write communication-intensive code for large
clusters must do so in consideration of the cluster’s in-
terconnections. Ideally, those interconnections would be
solely at the discretion of the hardware wrangler and hid-
den from the developer.

2.4 SW integrator and hardware wrangler

The ISP or startup that deploys its own data center to
host a web mail or blog hosting service finds itself at the
intersection ofsoftware integrator andhardware wran-
gler. The organization wishes to integrate existing soft-
ware into a solution tailored for its customers, but it finds
itself learning to manage aone-off data center as well.

2.5 developer and software integrator

One instance of this conflation occurs in the cloud: A
web developer may want to reason about individual web
requests. Yet today it is difficult for developers to write
scalable web applications without carefully integrating
their development efforts with the external factors, in-
cluding the load-balancing method in use and the operat-
ing system configuration.

Another instance of this conflation occurs at the client
machine. Today, the interface between the web appli-
cation developer and the user’s experience has become
very wide and rich, comprising HTML, HTTP, CSS,
JPEG, PNG, SVG, Java, Javascript, Flash, Silverlight,
various video and audio codec standards, PDF, and so
on. Thewide web interface is so wide that two client



hardware software
user wrangler integrator

developer
solved by the §2.3 scale up vs. scale-out§2.5 cloud: vertical

software industry service integration
client: wide web ifc

software §2.1 client: DLL hell, §2.4 one-off data centers
integrator shared configuration

hardware §2.2 client: kiosk, dead hard disk
wrangler cloud: render farm

Table 1: This matrix identifies problems that occur when two roles (column and row headers) are conflated. Some
conflations occur at the client machine; others occur “in thecloud” (at server machines).

installations rarely exhibit compatibility, much less per-
formance equivalence; the poor developer is left build-
ing layers of compatibility machinery to account for in-
dividual browser implementations. Worse yet, the wide
standard evolves rapidly. If a web developer wishes to
exploit new functionality in a new version of a client
component, such as IE or Flash, she must either wait
for widespread deployment of that specific version, pro-
vide degraded fallback functionality in her application,
or require clients to accept a version upgrade. This last
demand is invasive, because upgrading the client com-
ponent extends the client TCB, and thus constitutes an
extension of trust. That trust decision is made by the
software integrator; perhaps a corporate IT department,
but very often by an individual user forced to act as soft-
ware integrator.

3 Solutions

In the previous section, we described the problems that
exist when computing roles are conflated. Now, we turn
to the solution space, analyzing it using the same tax-
onomy. Many solutions have a common theme: they
decouple previously conflated roles, and create simple,
explicit interfaces at role boundaries. This section shows
that our taxonomy gives structure to a number of existing
and proposed systems, and we posit that it also suggests
useful future research directions.

3.1 user and software integrator

Web applications are popular in part because they ad-
dress this conflation. Users can just use a web applica-
tion, without having to install or configure it. In a world
that consists entirely of web applications, the user needs
to do nothing but get a working web browser. The man-
agers of web-app sites take on the role of software inte-
grators, ensuring that their applications reference every
required component, in the version required. This soft-
ware stack is logically “installed” every time the user vis-

its the site and uninstalled the moment the user closes a
window.

With web applications, the software integration task
has not just moved; it has been dramatically simplified.
Application isolation enforced by web browsers, orig-
inally designed for security, had the unexpected addi-
tional benefit of preventing shared state, such as config-
uration and libraries. This prevents the inter-application
dependencies that plague desktop computers. Unlike on
a desktop operating system, “installing” a new web ap-
plication will never break the configuration of an old one.

Web applications have not solved this problem com-
pletely. Only a tiny fraction of legacy desktop software
has been rewritten in Javascript or another “web lan-
guage”. However, recent work, including the authors’
Xax [9], and the concurrent Native Client work by Chen
et al. [17], might be a solution. Both projects demon-
strate native execution environments that allow legacy
code to be executed in secure silos. The native-code si-
los still enforce both the security required by the web’s
trust model and the isolation that removes inadvertent
inter-application dependencies. This ability opens the
door to widespread redeployment of conventional desk-
top software as web applications, extending the decon-
flation afforded by today’s web applications to virtu-
ally all software. Of course, there are still thorny de-
tails. Much software—music players, photo manage-
ment, video editors—requires access to local devices or
storage, and cannot be made into web applications until
there is a safe model for such access. Projects such as
Google Gears [3] are working in this direction.

Even in a world where all applications are web ap-
plications, the user would still be required the manage
the considerable desktop software stack between the bare
metal and the web browser, plus all its attendant exten-
sions. Might it be possible to extend the web applica-
tion model all the way down to the hardware? Perhaps
even device drivers could be made as ephemeral and re-
placeable as any web application. When a PC is turned
on, perhaps it could only be told which web application



it should run; the hardware manufacturer might provide
a list of potential device drivers, and the software de-
veloper a list of constraints, e.g., this CAD program re-
quires at least DirectX 19.4. The nascent “AXA” project
at MSR’s operating systems group is working in this di-
rection.

3.2 user and hardware wrangler

The web application deployment model begins to de-
conflate these roles: part of the model is that user’s doc-
uments are often stored in the cloud, not locally, decou-
pling users’ state from a particular hard drive. However,
projects such as Gears that give web applications access
to local storage can break this abstraction. If our suppo-
sition about the importance of decoupling is correct, the
right architecture makes local disks nothing more than a
cache for data that is stored canonically and durably in
the cloud.

Even converting entirely to cloud storage isn’t enough
deconflation for hard-core users who need to wrangle lots
of extra hardware for special tasks. Artists and video ed-
itors wrangle racks of machines into render farms; engi-
neers data-mine over terabytes of data across hundreds
of machines. This conflation is partially addressed by
data-flow languages, as we will describe in Section 3.3,
and partially by our recent “Utility Coprocessor” project.
The Utility Coprocessor [10] is a library that lets desktop
software wrangle hardware from a utility computing ser-
vice (e.g., EC2), and automatically ensure that the farm’s
software configuration matches the user’s for the length
of the computation. The user no longer wrangles com-
puters, racks, and cables; instead, he can attach his desk-
top application to a large-scale interactive render farm
with a credit card.

3.3 developer and hardware wrangler

The dichotomy between scale-up and scale-out (§2.3)
still pervades general purpose applications. Most devel-
opers must still think explicitly about machine bound-
aries when writing scalable applications. However, there
has been much recent progress in specific domains. The
recent emergence of the Map-Reduce model [8, 12, 1]
has proven successful at letting developers specify data-
flow problems that implicitly harness thousands of ma-
chines. Microsoft Azure and Google App Engine, which
we mentioned in Section 1, let developers think solely
about the code required to service a single web request.
The underlying infrastructure is responsible for scaling:
a high-performance clustered filesystem, an automati-
cally expanding pool of machines on which to instantiate
the application, and load balancing.

An important limitation of these environments is that
they require services to be written afresh in a new en-
vironment. Programs like Postfix and Wordpress, coded
against a more conventional POSIX single-system im-
age, however, encode valuable protocol and domain
knowledge. Our group’s nascent Getwell project aims
to produce a software stack that can be integrated with
commodity legacy software to make it transparently and
elastically scalable. Just as the Utility Coprocessor (§3.2)
helps the developer package scalability into a paralleliz-
able desktop application, Getwell helps the developer
package scalability into a service. The software integra-
tor “installs” the software on a utility reservation (cluster
of cloud machines), and configures it to provide the de-
sired service and interact with other services from the in-
tegrator. The Getwell library automatically wrangles and
scales hardware resources using the utility abstraction, so
only the hardware wrangler thinks about resource allo-
cation, statistical multiplexing, spare capacity, and fork-
lifts.

As with App Engine’s Datastore or Azure Storage, a
central component of Getwell is a scalable, fault-tolerant
file system. By meeting legacy software at the POSIX
file system interface, we hope to exploit its tolerance of
file system latency and its recovery after process failure,
and thereby avoid the transparency trap of distributed
shared memory [13].

Projects like Monsoon [11] and Vahdat’s proposed
datacenter network topology [6] also aim to decouple
hardware wranglers from developers. Using commodity
components configured in a fat tree, they construct data
center networks with full bisection bandwidth. Within
such a layout, software that once worried about “rack
locality” can safely abstract away the network topology
while still extracting maximal performance from the in-
dividual machines.

3.4 SW integrator and hardware wrangler

The recent emergence of a practical utility computing
interface, such as implemented by Amazon’s EC2, ad-
dresses this problem. The interface between software in-
tegrator and hardware wrangler is now explicit and nar-
row: a virtual machine image. The software integrator
defines it, and the hardware wrangler instantiates it.

Some corporate IT departments use a similar approach
to manage desktop hardware: one group of software in-
tegrators defines and manages a standard system image;
another group of hardware wranglers deploys that image
onto every desktop and laptop purchased. This approach
partly relieves the conflation, although because each cor-
poration uses a different set of software, each corporate
IT department must repeat the software integration task.
Ideally, the corporation itself might like to act only as a



“user,” outsourcing even software integration.
Our taxonomy also suggests that the Azure and App

Engine services should be refactored. Today, both ser-
vices couple a high-level distribution interface with an
actual data center, coupling software integration to hard-
ware wrangling. Instead, they should be offered as a soft-
ware library that sits on top of a narrow, low-level hard-
ware interface (such as the VM interface to EC2). This
would enable the developer to select the best scalability
library, then sell his software to the software integrator,
who in turn could contract with the datacenter hardware
wrangler of her choice.

3.5 developer and software integrator

As described above (§3.1), the web model helps de-
couple users from software integrators. However, the
web standard, which links the developer to the software
integrator, is so wide and fast-evolving that it does a poor
job decoupling the two. Developers exert effort testing
against a variety of browser/OS combinations to ensure
compatibility, and the software integrator must vet rapid
browser and plugin releases for security and interopera-
tion.

We propose a narrow, slowly-evolving interface be-
tween the developer and the client software integrator.
Specifically, we observe that, given web-deployable na-
tive code, almost all rapidly-evolving code can be treated
as library code: layout engines (HTML, CSS), text ren-
dering (Pango, TrueType, PDF), raster and vector ren-
dering (JPG, PNG, SVG), audio/video codecs (MPEG,
Ogg), runtime (Javascript, JVM), and even 3D rendering
(OpenGL).

Suppose we restrict the client web interface to a
strongly-isolated native code container [9, 17] plus a
low-level display blit and uncompressed audio interface.
A practical model would also address isolated persistent
storage [3] and a security policy for communication [15].
We call this model an “exobrowser”, as it employs the
exokernel model of handling only isolation and resource
management in the “kernel”. Free to radically alter his
library operating system, the developer need no longer
negotiate with the software integrator to upgrade to the
latest rendering engine or codec (lest it be a Trojan [5]).

4 Summary

The four roles of user, developer, software integrator,
and hardware wrangler are often conflated in contempo-
rary system architectures. This paper articulates a tax-
onomy of such conflations, showing how each confla-
tion appears in common system architectures, leading to
problems. Framing those problems according to our tax-
onomy also points the way to solutions. Each has a com-

mon theme: refactor and tighten the interfaces that de-
couple the roles of the participating humans. Our group
has undertaken recent projects to address instances of
these problems; this paper uses the taxonomy to identify
further problems and propose solutions.

References

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Google App Engine. http://code.google.com/appengine/.

[3] Google Gears. http://gears.google.com/.

[4] Microsoft Azure. http://www.microsoft.com/azure/.

[5] Zlob trojan. http://en.wikipedia.org/wiki/ZlobTrojan.

[6] A L-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A scal-
able, commodity data center network architecture. InSIGCOMM
(2008), pp. 63–74.

[7] A MAZON WEB SERVICES. EC2 elastic compute cloud.
http://aws.amazon.com/ec2.

[8] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified data
processing on large clusters. InOSDI (2004), pp. 137–150.

[9] DOUCEUR, J. R., ELSON, J., HOWELL, J.,AND LORCH, J. R.
Leveraging legacy code to deploy desktop applications on the
web. InOSDI (2008), pp. 339–354.

[10] DOUCEUR, J. R., ELSON, J., HOWELL, J.,AND LORCH, J. R.
The utility coprocessor: Massively parallel computation from the
coffee shop. InUnder submission (2009).

[11] GREENBERG, A., LAHIRI , P., MALTZ , D. A., PATEL , P.,AND

SENGUPTA, S. Towards a next generation data center architec-
ture: Scalability and commoditization. InPRESTO Workshop
colocated with SIGCOMM (2008), pp. 57–62.

[12] ISARD, M., BUDIU , M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. InEuroSys ’07 (2007), pp. 59–72.

[13] L I , K., AND HUDAK , P. Memory coherence in shared virtual
memory systems.ACM Trans. Comput. Syst. 7, 4 (1989), 321–
359.

[14] VERBOWSKI, C., KICIMAN , E., KUMAR , A., DANIELS, B.,
LU, S., LEE, J., WANG, Y.-M., AND ROUSSEV, R. Flight
Data Recorder: Monitoring persistent-state interactionsto im-
prove systems management. InOSDI (2006), pp. 117–130.

[15] WANG, H. J., FAN , X., HOWELL, J.,AND JACKSON, C. Protec-
tion and communication abstractions for web browsers in mashu-
pos. InSOSP (2007), pp. 1–16.

[16] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND

WANG, Y.-M. Automatic misconfiguration troubleshooting with
PeerPressure. InOSDI (2004), pp. 245–258.

[17] YEE, B., SEHR, D., DARDYK , G., CHEN, J. B., MUTH, R.,
ORMANDY, T., OKASAKA , S., NARULA , N., AND FULLAGAR ,
N. Native Client: A sandbox for portable, untrusted x86 native
code. InIEEE Symposium on Security and Privacy (2009).

[18] YUAN , C., LAO, N., WEN, J.-R., LI , J., ZHANG, Z., WANG,
Y.-M., AND MA , W.-Y. Automated known problem diagnosis
with event traces. InEuroSys (2006), pp. 375–388.


