
Toward Cloud-based Collaboration Services

David Banks
Hewlett-Packard Labs

John S. Erickson
Hewlett Packard Labs

Michael Rhodes
Hewlett Packard Labs

Abstract
In this paper, we argue increased outsourcing of non-core competencies will create demand for cloud-based
platforms to address the need for content-centered collaboration between organizations. We introduce a prototype
created to evaluate the suitability of current enterprise content management (ECM) technologies for this type of
platform. Following from this work, we highlight several areas where we feel current platforms are inadequate and
new approaches are required, particularly in multi-tenancy and user-customization

1. Introduction
As we approach the end of the first decade of the 21st
century, we are witnessing a disruptive change in the
provisioning of information technology: the advent of
cloud computing. For most organizations, information
technology is not a core competence. Until recently,
their only option was to retain IT specialists on-
premise, but now alternatives from the likes of Google,
Amazon and Salesforce.com are becoming increasingly
viable. Accordingly, out-sourced IT is now an option
for all sizes of company.
This coincides with businesses seeking to operate
efficiently in a global marketplace by outsourcing non-
core competencies. As businesses choose to excel in a
single area and partner for the rest, collaboration across
organizational boundaries becomes a core part of
product development. Traditional Enterprise Content
Management (ECM) software has not kept up, leaving
people collaborating via email—the lowest common
denominator.
In response to these trends, we envision a generation of
cloud-based collaboration platforms emerging to
address the needs of content-centered collaboration
between businesses. Although superficially similar to
the best of today’s ECM systems, these platforms will
operate on a massive scale, simultaneously supporting
thousands of organizations and millions of users. The
Fractal research program [1] in HP Labs aims to design
and deploy such a platform.
As part of the Fractal research program, we have built a
prototype of our envisioned platform using a leading
ECM system. We found several shortcomings in this
system as we tried to apply it in this new context. This
paper, therefore, presents where we believe research is
required to bring ECM to the cloud.
The paper is structured as follows. Section 2 presents
the prototype, describing our goals and giving an
overview of its functionality. This provides the
framework for Section 3, where we discuss our

rationale for why current leading ECM systems are not
a suitable base for a cloud-based, highly user-
customizable collaboration platform. In Section 4, we
highlight related work in this area. Finally, in Section 5
we present suggestions for future research directions.

2. Fractal Conceptual Prototype
We built the Fractal prototype to help us understand
how suited current ECM technologies are for realizing
Fractal’s vision of a multi-tenanted, highly user-
customizable collaboration service.

2.1 Key Features
We wished to demonstrate the following features of
Fractal in the prototype:
Content Spaces: hosted workspaces which bring
together people, content, collaborative tools, and
customizable active behaviors.
Active behaviors: a way for end users to define
functional extensions operating within the context of a
content space involving content, metadata, automated
processing services and tasks carried out by other users.
An active behavior may be manually invoked as
needed, or it may be automatically triggered by a
change to a content space or the passing of time. An
invocation may involve a single content object or many
objects in parallel. Their complexity ranges from
creating up-to-date PDF versions of documents as they
are modified, to running workflows that automatically
collate information from several collaborating
organizations into a single document.
Agile configuration: the service must be lightweight,
low-touch and customizable by end users without IT
involvement.
Open and extensible by third parties: the platform
should provide open APIs that enable third parties to
develop customizations and extensions that may be
obtained or purchased through a marketplace by users.

2.2 Technical Approach
We evaluated several technologies as a starting point
for the prototype, including Joomla, Drupal, Alfresco,
Liferay, TikiWiki and SharePoint. Our selection criteria
included: strong document management features;
embedded workflow; social capabilities (blogs, wikis,
tagging); and user interface qualities similar to those we
envisioned for Fractal. We selected Alfresco’s new
Share technology [2] because it satisfied these criteria.

2.3 Conceptual Prototype Overview
In this section, we give a brief overview of our
prototype. For further details, we refer the reader to a
series of short demo videos we have produced based on
the prototype [3].
Our prototype centered on a content space supporting a
collaborative pharmaceutical research project called
UTS-Alpha. In addition to the research content in a
document library, the space had a customizable set of
collaboration tools (wikis, blogs and so on) with a
configurable default view, the dashboard, which
summarized the members and content of the space.
To demonstrate the key Fractal concepts of user-
customizability and developer extensibility, we built the
Fractal Extensions Marketplace where a user chooses
functionality to add to their content space. To provide
functionality, developers publish extensions in the
marketplace. The marketplace provides a rich set of
search and browse capabilities to help users find the
functionality they need.
We used the Simile Exhibit faceted browser [4] to build
the marketplace. Exhibit gave us several views—
tabular, timeline, etc.—each of which allowed the user
to narrow down their search using facets derived from
descriptive, commercial and social metadata bound to
listed extensions.
Adopting an extension to a user’s content space
requires a single click of an install button, not unlike
adopting Gadgets for the iGoogle homepage.
For the prototype, we created an extension allowing the
user to add functionality to the UTS-Alpha content
space in the form of a workflow to coordinate
production of a monthly report by the members of the
space. This extension added a dashboard component
and a jBPM workflow to orchestrate the steps necessary
to build the report, including emailing members when
they needed to write or review a section and archiving
the complete report into the document library.
Although we successfully used Alfresco Share to
rapidly prototype a functioning system with many of
the end-user characteristics we envision for Fractal, our

experiences building the prototype convinced us neither
Alfresco nor any of the other leading ECM platforms
provide a suitable base for a multi-tenanted, cloud-scale
collaboration platform. The next section discusses why
we feel this way.

3. Technical Challenges
In this section, we discuss where current ECM
platforms have shortcomings when building cloud-
based collaboration platforms. Though our discussion
draws specific examples from our experience with
Alfresco, we believe our conclusions apply to current
ECM software in general. The issues fall into two broad
topics: multi-tenancy and extensibility.

3.1 Large-Scale Multi-Tenancy
Most cloud-based services are inherently multi-
tenanted; this arrangement currently seems the most
efficient way to deal with the scale required to run
services at this scale.
In general, the definition of multi-tenanted software is
that it gives each customer the impression they have
their own instance of the software, whilst in reality
services share a single or a few large instances between
many users. Customers see their data and settings as
isolated from other customers.
This hard segregation of customer data makes it
impossible for individual customers to share their data.
As organizations are likely different customers from the
point of view of the service provider, problems arise
when applying this definition to a service intended to
facilitate collaboration between organizations.
The multi-tenancy paradigm offered by a cloud-based
collaboration needs to support several usage patterns. A
content space may have a single user and so be a
private space. It might instead have multiple users from
the same company, and thus be a collaborative
company space. Finally, it may have users from
different organizations, and therefore be a collaborative
space for inter-organizational activities. The latter two
of these patterns could well have participants from
different customers working together.
We therefore argue “tenant” and “customer” are not
synonymous in this environment. In a multi-tenanted
collaboration service, a tenant is instead a collection of
distinct, collaborative activities, people and related
content—a content space in Fractal’s terminology. We
use this definition of tenant in the discussion in this
section.

3.1.1 Data Isolation
Data isolation ensures adequate segregation of data to
prevent unauthorized access by tenants to each other’s

data. In Alfresco Share, all content spaces (sites in
Alfresco) are persisted to a single shared store. This
store is backed by a relational database, together with a
file system that contains content and a single Lucene
index. The store provides access control, but otherwise
data separation is an application level responsibility.
Cloud-based ECM requires stronger data isolation for
two reasons.
Firstly, the single Lucene index shared by all content
spaces causes queries in any content space to slow
down as the number of content spaces increases—
regardless of the amount of data present in the content
space being queried.
Secondly, files representing content from different
content spaces reside in the same file system
directories. This makes it impossible to perform
efficient backups of individual tenant data to different
media at the file-system level—that is, without
invoking repository operations. Not only are there legal
implications to this, but it also prevents the service
provider offering tenants copies of their own backup
media.

3.1.2 Application Isolation
Like data, customizations or functional extensions to
one content space should not be visible by default to
other content spaces. Furthermore, if a user adopts an
application into one content space, parts of that
application—dashlets, for example—should not be
visible to users of other content spaces.
In Alfresco Share, developers implement applications
as web scripts, written in a combination of server-side
Javascript and Freemarker templates. However, all
content spaces (sites in Alfresco) share a common
search path for web scripts, so when a uses introduces a
new application into their content space it is actually
available to all content spaces. Users can also extend
the functionality of Alfresco using custom jBPM
workflows; these are also deployed globally and suffer
the same lack of isolation.
Managing functional extensions as data objects within
content spaces rather than a separate global space, as is
currently the case in Alfresco, is required for
application isolation.

3.1.3 Performance Isolation
A third type of isolation ensures resource-intensive
activity in one content space does not affect the use of
other content spaces. This is one of the hardest
challenges when designing a multi-tenanted service
because it conflicts with the goal of reducing service
costs by sharing resources between tenants. In general,
a multi-tenanted service should adopt several

approaches to minimizing the impact of tenants on each
other.
First, the service should track resource usage on a per-
tenant basis. Resource usage typically includes storage,
I/O bandwidth, CPU usage, and possibly memory
usage. Such tracking enables identification of resource
intensive tenants. It is also worth tracking resource
usage against other dimensions, such as per user,
organization, and application. Application resource
tracking allows blocking or throttling of poorly written
applications until they are improved.
Second, tenants should be charged based on resources
consumed. This form of pricing (as opposed to a flat
rate or fixed subscription) serves as a form of feedback
to make users sensitive to what they are doing. All
existing large-scale cloud platforms (Amazon Web
Services, Google App Engine, etc.) use some form of
resource-based pricing.
Third, the service should dynamically load balance
tenants across hardware resources. Usage patterns are
likely to be bursty and there will be times when
resources are over-allocated causing hot spots to
develop. Dynamically altering resources assigned to
tenants could minimize the impact of such hot spots. In
extreme circumstances, the service can throttle a
tenant’s resources. This is a last resort because
repeatedly throttling a tenant is likely to discourage
future use of the service.
Current ECM platforms, designed for use within a
single organization, lack this type of fine-grained
monitoring, management and billing infrastructure
necessary to support these approaches.

3.1.4 Tolerance of Hardware Failures
In a cloud-scale service provisioned across thousands of
servers, disk and server failures occur routinely and
must not result in loss of service. In addition,
continuous hardware upgrades must not interrupt the
service to any tenants.
ECM platforms use a variety of techniques to support
high-availability deployments. In Alfresco, servers can
be clustered and share state using a transactional object
cache. A single database is shared between servers,
which must itself be clustered. Indexes are maintained
locally, loosely synchronized to the object cache.
Finally, content either is stored on a single shared file
system or on local file systems replicated between
servers [5].
This approach to high availability is expensive in terms
of hardware, software licenses and operational costs. It
also does not scale to a very large number of nodes.
Following this model, a cloud-scale service capable of

supporting thousands of tenants would require many
independent clusters (pods), shifting the problem of
load balancing to a different level rather than solving it.

3.1.5 Per-Tenant Levels of Service
In a multi-tenanted service, different tenants may
require—and be willing to pay for—different levels of
service. For example, one tenant might place a premium
on storing their data within certain jurisdictions.
Another may highly value low latency access to their
data. Providing these features requires the platform to
support per-tenant data placement, redundancy and
replication policies.
Current ECM platforms support policies such as these
at the deployment level. Therefore, to support differing
policies, a deployment per tenant is required. An
instance per tenant is unlikely to be a scalable business
model because of inefficiencies, not least the
mechanisms used to provide high availability discussed
above. Therefore, support of per-tenant levels of service
within an individual deployment is required for ECM
platforms to support multi-tenanted services.

3.2 Extensibility
The second major area of Fractal research centers on
allowing users to customize their content spaces using
functionality created by developers and other interested
users. This research direction stems from our belief a
cloud-based service can uniquely allow users and
developers to create, share and—if desired—sell pieces
of functionality.
We seek to explore a sustainable paradigm where users
are able to conceive and create new functionality,
leveraging social networks for discovering and
propagating their wares. Achieving this requires not
merely an accessible development model, but a
tractable means for sharing, practical mechanisms for
installation, and assurances of safe execution.
Today none of this is available close to the user. In this
section, we discuss where research is required to enable
this model.

3.2.1 Ease of Extension by Developers
A number of factors make a platform attractive to
developers, including accurate documentation; a
familiar programming language; well-designed, stable
programming interfaces; effective frameworks for
testing; and a solid development environment.
We found extending Alfresco to be complex, requiring
us to independently modify several different aspects of
the platform using several different languages and tools.
Deploying our extensions involved uploading artifacts
to various folders on our Alfresco server, making

uploading in a single package troublesome; our
Extensions Marketplace required extensive knowledge
of Alfresco’s inner workings to enable single-click
deployment of the Progress Report active behaviour.
We also note that not many ECM companies have set
out to create platforms as open as Alfesco. In addition,
few commercial ECM platforms are sufficiently widely
deployed to have attracted a large following of third
party developers.

3.2.2 Ease of Customization by End Users
With Fractal, we want to empower ordinary users to
tailor content spaces to their needs. We want their
customizations to extend beyond simply adopting
applications written by professional developers; rather,
we want to create an environment where end users are
able to author their own extensions that precisely meet
their needs and, if appropriate, share these with the
broader community.
Many ECM systems embed simple scripting and
workflow capabilities that, in theory, provide an easy
route to authoring simple extensions. Alfresco, like
many other ECM systems, embeds the JBoss jBPM
workflow engine to allow custom workflows to be
developed. In our prototype we evaluated the suitability
of this environment for non-technical end users.
Unfortunately, our results were not positive.
Even for experienced software developers,
implementing the jBPM workflow for the Progress
Report application described in Section 2.3 was time
consuming. We found several sources of complexity:
users first needed to find a jBPM design environment as
one was not part of Alfresco; the Eclipse-based
graphical editor only gave a partial view of the
workflow, requiring users write actions in code; users
needed an understanding of concurrent programming
concepts, such as fork and join; users needed to make
XML configuration changes across the platform to
support the workflow.
This complexity needs eliminating if non-technical
users are to have a chance at authoring their own
custom active behaviors.
A core value we see in active behaviors is allowing
non-technical users to create actions that respond to
changes in their content in novel ways. This is
impossible in Alfresco, but we believe essential in
allowing people to build compelling, timesaving
functionality around their content. How to provide
simple, effective means for users to produce such
reactive functionality around groups of content is a
specific focus area for our work.

4. Related Work
Focusing on the scientific domain, myExperiment [6]
provides compelling confirmation that users can
successfully author and share complex workflows,
given the right tools. In the myExperiment “virtual
research environment,” participants are able to share,
extend and even execute scientific workflows and share
data sets with fellow researchers and developers from
across domains of interest. We envision a similar
ecosystem of development and sharing in Fractal for
both user defined behaviors and developer created
extensions.
The Ning social network platform [7] demonstrates
how easy it can be for users to create their own
customized spaces. The key difference between Ning
and Fractal is that Ning is consumer focused and does
not extend its powerful user configurability to
document management and workflow features.
Several cloud application platforms have recently
emerged that free developers from concerns over how
the infrastructure supporting their applications will
scale if they are successful. The leading examples are
Microsoft Azure [8], Google App Engine [9] and
Salesforce’s Force.com [10]. The Force.com platform is
especially compelling, as they have fully recognized the
importance designing specifically for multi-tenancy,
using a metadata-driven approach.
The Storage and Information Management Platforms
Lab (SIMPL) at HP Labs has recently presented work
in which they recognize the tradeoffs between
consistency and availability, and provide fine-grained
control of this balance at write-time [13]. We see this as
a promising step toward enabling tenant-level control of
similar tradeoffs in a multi-tenanted environment,
control not available today.
In the area of ease of extension for end users, there are
a number of works discussing ways to present BPEL
service composition workflows within a graphical
authoring environment [11][12]. These provide solid
foundations for the environments we require for
enabling wide-ranging user composition of services
during extension authoring.

5. Conclusions and Future Work
In this paper, we argued for a coming need for cloud-
based, highly user-customizable collaboration
platforms. We overviewed the Fractal project at HP
Labs that aims to create such a platform. We described
the Fractal Conceptual Prototype, where we explored
what we see as key requirements for a multi-tenanted
cloud-scale platform focused on content-centric
collaboration. We argued the current generation of

ECM technologies is not a good match, and highlighted
some of the improvements required.
Over the next twelve months, our research will focus on
alternative implementation patterns to satisfy these
requirements.

6. References
[1] Erickson J et al. “Content-Centered Collaboration

Spaces in the Cloud”. HPL Tech Report HPL-
2009-11. Submitted Jan 2009 to IEEE Internet
Computing special issue on Cloud Computing.
http://tinyurl.com/fractal-vision

[2] Alfresco Share: http://tinyurl.com/3z7wkh
[3] Fractal Conceptual Prototype Videos: Content

Spaces (http://tinyurl.com/cfzhjo), the Extensions
Marketplace (http://tinyurl.com/d53jyx), Active
Behaviors (http://tinyurl.com/c76ncd).

[4] Simile Exhibit
http://code.google.com/p/simile-widgets

[5] Alfresco Cluster Configuration
http://tinyurl.com/ct72mh

[6] De Roure, D., Goble, C. and Stevens, R. (2008)
“The Design and Realisation of the myExperiment
Virtual Research Environment for Social Sharing
of Workflows”. Future Generation Computer
Systems. http://eprints.ecs.soton.ac.uk/15709/

[7] Ning Social Network Platform: http://ning.com
[8] Microsoft Azure:

http://www.microsoft.com/azure
[9] Google App Engine:

http://code.google.com/appengine
[10] The Force.com Multitenant Architecture:

http://tinyurl.com/8uxxb7
[11] Lei Li, John Hosking and John Grundy, “Visual

Modelling of Complex Business Processes with
Trees, Overlays and Distortion-based Displays”.
2007 IEEE Symposium on Visual Languages and
Human-Centric Computing.

[12] Martinez, A., Patino-Martinez, M., Jimenez-
Peris, R. and Perez-Sorrosal, F, “ZenFlow: a
visual Web service composition tool for
BPEL4WS”. 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, 20-24
September, 2005.

[13] Amitanand S. Aiyer, et.al. “Consistability:
Describing usually consistent systems.”
Proceedings of HotDep 2008, The 4th workshop on
Hot Topics in Dependability (7 Dec 2008), San
Diego, California, USA. http://tinyurl.com/cnspyx

	1. Introduction
	2. Fractal Conceptual Prototype
	2.1 Key Features
	2.2 Technical Approach
	2.3 Conceptual Prototype Overview

	3. Technical Challenges
	3.1 Large-Scale Multi-Tenancy
	3.1.1 Data Isolation
	3.1.2 Application Isolation
	3.1.3 Performance Isolation
	3.1.4 Tolerance of Hardware Failures
	3.1.5 Per-Tenant Levels of Service

	3.2 Extensibility
	3.2.1 Ease of Extension by Developers
	3.2.2 Ease of Customization by End Users

	4. Related Work
	5. Conclusions and Future Work
	6. References

